Fidelix

FX-RP multiDISPLAY programming manual

FX-RP multiDISPLAY programming MEaNUEc..eeeiiiieeeiiieeeiieeeesiieesseeeessaeeeeaamseeesanseeesanseeeaanseeeeasseeeeanseeeaanseeeeanseeeeanseeeeannseeeanseeeeasaneeaanseeesnssees
Getting started with the FX-RP MUIIDISPLAYottt ettt e e e st e s te e e et e saee e st ee e beeaabeeaase e seeeaseessseeaseeaseeenseeanseeanseenseesnseesneeanen
General OVErVIEW...........coceeeieeiiieeiieeee e
Device properties............
Different versions
Encasings.........cccccovineeene
Different chip versions

Recalibrating the touch screen and changing settings
Updating the firmware of the FX-RP MUItiDISPLAYccoooiiiiiiieeeeee e
Using the FX-RP multiDISPLAY with the Fidelix multi24 room controller MOAUIE.............cueiiiiiii i 6
DIBIMO PIOJECES. ...ttt ettt h ettt e e a et e e he e e b e e s e bt e she e e she e e b e e e a s e e ea e e e s e e e b e e s an e e she e e eh e e et e e e abeeeae e e e neeeneesneesineestneeneeean

Softwareccoeviiiiinie

Overview.......cccoeeeeeeeennne.

Installation.............cc.cec...

Fidelix Graphics Editor
What you should know before you edit pages......
The FXINDEX Pageccoevvieveeiieeerieeeenieee e
Editing pages (a few pointers)c.cccceveerinene

HTML to Multi Display / Room Display Converter
The program’s Ulcccoeviieeiiiieeee e,
Converting HTML files to the DISPLAY format
Windows zoom settings and the CONVEIMENoi et ae e
Troubleshooting the converter

Getting projects on the multiDISPLAY
Loading projects into the FX-RP multiDISPLAY’S INtErNal MEMOTYcoiuiiiiiiiiitiee ettt sae et n e nreea 15
WIEH @N FXACONIIOIIET ...ttt e a et e e oa bt e oo a et e e a b et e e s bt e e e st et e £ sttt e e aa bt e e e st e e e ebbe e e e nn e e e e bneeennneeeaas

With a multi24 module and a PC

With a ySD memory card..................
Using graphics from a ySD-Card

Minimizing binary file size

Multiple projects on one uySD-Card...
(8T][oT=To [1gTo IE= T o] o] [=To1 Y7 = 01V oo | o TU -SSR

Detailed PrOGIramMIMINGc.oo ittt ettt e e b e e e b e e s b e e sas e e sb e e eate e saee e ebe e e b e e e b e e s ab e e ohe e et e e s et e e ehe e e be e e b e e e b e e easeeabeesaneesaneenbeneneean

Introductioncccceevieeeinenn.

Visualisation customisation
IEEE-754 Floating POINt FOMMAL ..ottt b e bttt b et a e eb e bt eh e e bt e et eb e e b eaeeeb e et e eaeenbeenneneeenne e

Increment, Decrease, MiNIMUM & IMAXIMUM ...ttt e e e e ettt e e e e e e e et et e eeeeeeeetateeeaeaeeeeeesssaseseeeeeassssseeeaaeeaaasssaeeaaeaeaananes

= L T o] 0 T=T = L (o] =SS

SHALUS TEXES ..ttt

Time and date, temperature, firmware version and Modbus address.............cccceeeecveeeeeneennn.

Internal time SChEUIES.........cooiii e

Strings / texts
= aL U= aTeto N oTo) Lol I U ET=T o =1 o T PR RTPRN
Customising keypad buttons
Extended UTF-8-character support
MOADbUS MASEE FUNCHIONEILY ..ottt b e bt h e et a e eh e e bt e et e e bt et e et e e se e e et e ea e e bt eae e et e et e neeenbeeanesaeene e
PoINtID’s iN the GraphiCS EQILOreiiiiiiiieciiie ettt e ettt e e st e e e et e e e teeeeaasaeeeasseeeesssaeeeaasseeeansaeeeessaeeeansaaeeansseaessseneeansseesanseeessnsen
The ModbusMasterSettings.txt filecccocoevirciiiinieeeeee
Available memory for communication socket definitions
Additional remarks...........ccccceviiieeiiineen.
ModbusMasterSettings.txt example
Alarm sounds based on slave register values...........c.cccoooeeeeiiee e
Selecting and triggering the sound directly from the slave’s register Valueccooi i 32
Selecting the sound from the MUItiDISPLAY’S 10CaI FEGISTEIScoiuiiiiiiiii ittt e
Mute the display sound triggered by local registers 3029+3030+3031
Complete Display register Structure OVervieW............cceeeueeeeiiieeiiier s
REGISTEI SECLONS ...ttt b e e bt e e h et e e bt e e b e e e st e e e a b e oo ae e e bt e e ab e e sae e e e be e e be e e b e e e ab e e saa e e abeesteesineessneeneeas
Input data (input from an external ModbuS MASTEI)ooui ettt ettt
Output data (output read by an external Modbus master)
How to work with input/output registers.........cccccooeveevienenneen.
Trends (history).......ccccoeveveneennene.
Graphical look-up table editor
String Variablesccccccveeennenn.
[T o] F=)V o F= 1 =T o 4= Y S SE
(011 =1 o T T [o T T OO OO TSR U USSP URRUPORPPORPRTOO

Fidelix FX-RP multiDISPLAY Programming manual page 1 of 41

Getting started with the FX-RP multiDISPLAY

General overview

The FX-RP multiDISPLAY’s interface is freely programmable. It consists of “pages” that are made using the
Fidelix graphics editor. Links can be made between pages, and the user will navigate in a similar way through
the pages. The graphics editor generates .htm pages that have to be converted using the “HTML to Multi Display
/ Room Display Converter”, which generates binary files that are suitable for the FX-RP multiDISPLAY.

Up to 768 kB of data (256 kB for generation 1 displays) can be stored into the internal memory of the FX-RP
multiDISPLAY. This is sufficient for most projects, but when more capacity is needed (heavy graphics, lots of
pages, ...), a uSD card can be used. You can order high quality uSD cards from us, and we strongly advise you
to use these uSD cards, as a (cheaper) uSD card breakdown will result in a freezing of the user interface,
because new pages are always loaded from the uSD card when this is used (see Using graphics from a pSD
card).

The recommended wat of working remains however, to NOT use a memory card, but optimise your graphics to
fit into the internal memory of the FX-RP multiDISPLAY (see Minimising binary file size).

The most common way the display is used, is as Modbus slave, in which case it can hold 250 variables, that are
called and referenced to as POINTS.

Each user interface created for the FX-RP multiDISPLAY resides in its own folder. This folder will further be
referenced to as the “project folder” in this manual. This folder needs to contain at least 1 .htm file, and a folder
called “Symbols” with all symbols used in the project. When no symbols are used, the folder still needs to be
present to be able to run the conversion from .htm files to binary files for the FX-RP multiDISPLAY.

The communication between the FX-RP multiDISPLAY as a slave, and a master device uses the Modbus RTU
protocol. The FX-RP multiDISPLAY has 250 predefined points (POINTxxx) that can be freely used. Each point
has 6 registers containing its value, unit, divider etc. (see Input data and Output data)

When working with other Fidelix devices, the programmer does not need to know about the Modbus registers;
for the multi24, all necessary code is generated by the converter, and when working with an FX-controller, the
first 50 points can be directly selected as the physical point of any DI, DI, Al, AO or alarm point.

If you are not using a Fidelix controller as your Modbus master, the linking of the FX-RP multiDISPLAY points
happens in the same way, only you’ll need to program your master to read and write the correct registers. The
register structure used by the FX-RP multiDISPLAY is explained later in this document.

Device properties

Physical size 3.5” (+/- 9 cm) diameter (72 x 54 mm screen, 85 x 85mm encasing)
Power supply 12-45 VDC or 16-32 VAC (V1 = 12-26VDC or 16-26 VAC)

Power consumption =1W at 100% / =0.5W at 40% display brightness

Resolution 320x240 pixels

Colours 16 bit depth

Images All standard supported image types. No dynamic gifs

Modbus communication | Modbus RTU over RS485 bus (only using A/+ and B/— connectors)
Modbus speed Slave: auto detect from 4 800 to 115 200 bps

Master: freely configurable in ModbusMasterSettings.txt file (see Modbus Master
functionality) from 9 600 to 115 200 bps

Modbus settings Slave: The number of databits and stopbits is automatically detected from the bus.
The parity is set by placing a file “serial.txt” in the project folder with this content:
“Parity=Even”, “Parity=0dd” or “Parity=No”".

When no file is present, the default of “No Parity” is assumed.

Default settings (set when no bus communication is detected):
8 Data bits, no parity, 1 stop bit.

Master: freely configurable in ModbusMasterSettings.txt file (see Modbus Master
functionality)

Fidelix FX-RP multiDISPLAY Programming manual page 2 of 41

Modbus port protection | The maximum common-mode voltage on the bus is -7V/12V.

The bus is protected against faults of minimum 70V

Display “points” Slave: 250 points total, maximum 40 per page

Master: 40 points / page, total depends on the distribution of the registers of the
slave device(s) (see the explanation about ModbusDevices at the end of the
Modbus Master functionality section)

Available memory 768 kB (V1 = 256 kB)

Different versions

Encasings

%4 Fidelix

multiDisplay A

» Modbus touch screen

HoubA_Y = .: — _P_AET‘YW“I

Tl e

The FX-RP (Fidelix Room Panel) multiDISPLAY is available in two different encasings. Both encasings fit in a
standard European pattress box (electrical socket or light switch size). Both have external dimensions of
85x85mm.

The FX-RP-A is straight: The FX-RP-B is +/- 7° tilted upwards:

Though the PCB for the Room Panel and Hand Panel have a different shape, they have in fact the same
hardware specifications and can thus be used with the exact same software.

):(Fidelix FX-RP multiDISPLAY Programming manual page 3 of 41

Different chip versions

Two different chips have been used for the FX-RP multiDISPLAY:; deliveries before 2017 were made with chips
with 256 kB (STM32F103), and deliveries from January 2017 onwards are made with chips with 768 kB of
memory available for project pages and graphics (STM32F405). This difference is important when selecting the
correct version of the firmware for your FX-RP multiDISPLAY. The “first generation” displays use a processor
with product code STM32F103 and require firmware with version numbers 0.xx, 1.xx, or 2.xx. The second
generation displays use a processor with product code STM32F405 and require firmware with version number
2.xx or 3.xx. As this can be very confusing (some 2.xx for V1, some for V2), always check the change log at the
end of this document to know which firmware version is compatible with which hardware version.

You can also recognise the different generation displays by their different programming connector (the red plastic
connector, used during production), capacitor (the part looking like a small button battery, holding time schedule
settings and the clock for 10-50 hours), and tamper switch, or by the PCB version; 1.52 and upwards = 2
generation multiDISPLAY.

'L_"_';'
e
v -24V & il
2=BND 2 =
4 3=A/NODBUS R =] -
4=B/MODBUS ~ =5

Jsavnm* '
: 4=a/nonsus»- Fiemr

multiDISPLAY 1st generation multiDISPLAY 2nd generation
PCB version < 1.52 PCB version >= 1.52
Processor = STM32F103 Processor = STM32F405
Power supply: 12-26 VDC / 16-26 VAC Power supply: 12-45 VDC / 16-32 VAC

Changed components
different capacitor and holder (bottom right, next to the NTC10 sensor)
different programming connector for production (red plastic for V1)
different tamper switch (centre right)

’”’Zﬁi Fidelix FX-RP multiDISPLAY Programming manual page 4 of 41

Using the multiDISPLAY

Startup

The FX-RP multiDISPLAY is started by connecting the power supply.
When a project is detected, either on the internal memory or on the uSD
card, this will be loaded into working memory and a message will be
displayed. After a few seconds the “home” page of the project will be
shown.

Recalibrating the touch screen and changing settings

By pressing the touch screen of the FX-RP multiDISPLAY for about 10
seconds, the multiDISPLAY’s calibration is activated. Follow the on-
screen instructions and click each of the three blue crosses one by one
with a pointy device. Fingers can also be used, but tend to get less

Loading data, please wait |

Touch the blue cross to clibrate

precise results.

Calibration can also be called from a link on the multiDISPLAY.

Settings Firmw:i(ig\.fersion @
E_I?_JMIE Time Schedules
|2|3]4]s|
[1]2]3]4]s

[0 Touchscreen dlick sound
Touchscreen finger mode
[1 upside down mode

10 Modbus Address
100% Backlight Brightness - Operating

40% Backlight Brightness - Standby
57600,8N1

After calibration, the settings screen is opened. Time, Date, Modbus
address, display brightness and the five internal time schedules can be
adjusted from this page. Also the firmware version is show here, and click-
sounds can be en-/disabled, the orientation of the display can be changed
and the precision of the screen can be adjusted by selecting “finger
mode”.

NOTE: When changing time and date, it takes a few seconds to update
the values shown on the settings page. This means that a changed
parameter might jump back to its old value for a few seconds right after it

is changed. It is thus best to wait a few seconds for the new value to be show on the settings page, and only
then move on to the next parameters to avoid conflicting update-processes and parameters resetting to their old

values.

On the settings screen, the five internal time schedules can also be

accesses and modified:

Note that one can also create custom graphic pages for the internal
time schedules (see the Internal Time Schedules section).

Time Schedule 1 15:49:06 ..
Monday 1:[1 atfoe :[oo
[#] Tuesday 2:'0_ atlﬁ : lﬁ
[¥] Wednesday 3:|1_ atlﬁ : IE
] Thursday 4:||:|_ atli:lﬁ
e e[[
Friday
6: IIJ_ atl_ : l_
[] saturday - Il— atl_ : l—
[sunday 3=|'3_ atl— . l—

It is possible to disable the settings page or certain parameters through a Modbus register. It is also possible to
change settings through Modbus registers. Registers are explained in the “Display parameters” paragraph.

Opening the settings page and starting the calibration can also be done by creating a link on your pages. See

the “Links” section in this document.

Fidelix FX-RP multiDISPLAY

Programming manual page 5 of 41

Updating the firmware of the FX-RP multiDISPLAY

The firmware of the FX-RP multiDISPLAY can be updated using the module update feature (Programming >
Module versions) on an FX-controller. The firmware updating procedure is like uploading graphics to the internal
memory of the FX-RP multiDISPLAY except that new firmware files should be copied to the \hdisk\fidelix\bin\hex
folder instead of the \hdisk\fidelix\data folder. The firmware can also be uploaded to the FX-RP multiDISPLAYs
connected to the sub-bus of a multi24 module. The file name for a pass-through updating should be for example
PASSTH-12-MULTI-DISP.hex-0173, where 12 is the Modbus address of the FX-RP multiDISPLAY.

The firmware can also be updated by the display itself. Copy the file “RDFW.BIN” you can download from our
partner page to the root of the uSD-card. With power off, insert the uSD-card into the display. Power on the
display. The “DIAG” LED on the back of the display will blink rapidly during the time the firmware is being
updated, and the screen will light up but stay blank during the updating process. The file “RDFW.BIN” will be
renamed to “RDFW_LOADED.BIN” to avoid reloading the firmware every time the display is powered on again.
If there already is a file called “RDFW_LOADED.BIN”, the renaming of the original file will fail without error
message. (This means the next time a display is powered on with that uSD-card inserted, that display will update
the firmware, regardless of the fact that it might have done so on the previous boot.)

You can purposely keep the “RDFW.BIN” file to update several displays consecutively, by naming the file
‘RDFWKEEP.BIN”. (Basically, this has the same effect as having both the “RDFW.BIN” and the
“‘RDFW_LOADED.BIN” file on the ySD-card.)

Using the FX-RP multiDISPLAY with the Fidelix multi24 room controller module

The FX-RP multiDISPLAY can be connected to the multi24’s external bus either using the RJ12 connector or
via the P2, GO, EA and EB contacts. The converter will generate a sample IEC-code to be used on the multi24.
It is highly recommended to use this sample code at least as a starting point. Sample IEC-files suitable to use
directly with your project are stored in the \UserFiles\IEC folder in the same folder the converter is located.

Demo projects

Fidelix provides a file with demo projects for the FX-RP multiDISPLAY. These demo projects are a good starting
point for learning how to use the FX-RP multiDISPLAY. Note that these are sometimes incomplete, and in no
way cover the totality of functionalities the FX-RP multiDISPLAY offers. They are, however, a valuable source
of inspiration and are very useful as examples.

Software

Overview

To make projects for the FX-RP multiDISPLAY, two programs are needed, that can both be downloaded from
our partner page. The usual work flow will be as follows:

- Create pages to be loaded onto the FX-RP multiDISPLAY with the Fidelix Graphics Editor (.htm file format)

- Convert those pages with the HTML to Display converter program

- Copy the “UserFiles” folder generated by the Converter program to a uSD card

- Start up the FX-RP multiDISPLAY with the uSD card in it and wait for the project to be loaded into the internal
memory

- Power off the FX-RP multiDISPLAY, remove the uSD memory card and power the display up again; your
project is now loaded into the display and ready to be used

Fidelix FX-RP multiDISPLAY Programming manual page 6 of 41

Installation

Our software is designed for Windows, and uses a lot of its embedded features. It also doesn’'t have an
installation wizard where a User Account Control check could be done to give administrative rights to the
programs, which is why all our programs need to be granted sufficient rights in another way. There are two ways
to do this:

The first is by unblocking the downloaded files (in the file properties dialog box) in Windows file explorer as
follows:

multiDISPLAY converter
File Home Share View Manage 9
- & cut B x @ I Mew item ~
LIJ .| Copy path * -‘U Easy access =
Pin to Quick Copy Paste Move Copy Delete Rename Mew
Srraeen |7] Paste shortcut tar to-w - folder
Clipboard Organise Mew
= v A » multiDISPLAY converter v O Search multiDISPLAY converter 2
-, #_.:f RIRURGIY |71 1 oDiSPLAY. exe Properties
/ Application
= General Compatibility Security Detals Previous Versions
Fidelix m
i i 4 [HTMLLODISPLAY exe

HTMLtoDISPLAY. HTMLtelmage.ht
exe = -

Open Fld Type of file: Application (.exe)

Open using Resource Hacker Description: BMPconvert

G Run as administrator Cize
Location: CA
s Availability:
Copy Avalainy: ol sz 176 KB (180 736 bytes)

Create shortcut Size ondisk: 180 KB (184 320 bytes)

Delete
Mtibutes: [|Bead-only [] Hidden Advanced...
Rename —
Security: Thig file came from another
Properties —ﬁ computer and might be blocked ta Unblock
k help protect this computer.
Ziterms 1 item selected 176 KB

Corcel | [zosly

NOTE: This needs to be done for all programs, as well as for all files!

The second way to achieve the same goal is by following the steps below carefully; sometimes, the unblocking
doesn’t seem to be enough, and then the following method needs to be used:

1. Unzip the program (preserving the subfolder structure!) and save the folder on your local hard drive.

2. Delete the downloaded zip-file.

3. Re-zip the whole folder you just unzipped locally and save the new zip-file on your local hard drive

4. Delete the previously unzipped folder (the folder unpacked from the downloaded zip-file).

5. Now, from the locally generated zip-file, unzip again the same folder (again, preserving the subfolder
structure!) and save the folder on your local hard drive.

6. Delete the locally created zip-file.

7. Do the same for all software AND the example folders. (IMPORTANT!)

’” Fidelix FX-RP multiDISPLAY Programming manual page 7 of 41

Fidelix Graphics Editor
What you should know before you edit pages

The Fidelix Graphics editor is not only used for making graphics for the multiDISPLAY. It is also used to make
pages for our larger controllers; the FX-line and Spider, for our multiLINK protocol converter, and our webVision
SCADA software. This means that some of the features in the graphics editor are not used for the multiDISPLAY
(and that is also why we first make HTML pages to subsequently convert them to a format that the multiDISPLAY
can read).

To open pages with the graphics editor, make sure your project folder structure is similar to this: all .htm files in
1 folder where there is also a folder called “Symbols”.

In the “EditPoint” dialog box, following features are NOT recognised by the multiDISPLAY: CSS file, CSS Class,
User level, Show info, Image rotation, Image Front colour and Symbol Front colour. All other features can be
used as with the other products.

The border-lines you see changing at different editing sizes (640, 800, 1024) are not used for the multiDISPLAY.
For the multiDISPLAY, the easiest way to mark the available graphics area is to put an element without pointID
at 320 (X) and 240 (Y) pixels like in the example files.

Important to know is also that the project folder and the graphics editor program folder have to be on the same
logical Windows drive (e.g. C:\) because of the same Windows rights reasons the editor needed to be unblocked.

With the editor, a set of .htm pages can be made. Links can be made between pages. Any number of elements
can be placed on the plane, keeping in mind the 320x240 pixel size of the display itself. This means that any
element positioned outside these boundaries will be ignored by the converter.

Make sure to read through the cheat sheet page that pops up when you Fidelboc Graphics ¢ ™ -+ 8.5 - 03.09.2014

click .the q.uestlon mark. next ’Fo the three flags. It contains useful tips for 'I- % -+
working with the graphics editor. ‘
[FE | PFideli

New file |
Minan fila 1 ST

Choose “ShowPoints” in the left menu or click right on an empty spot in your
page with no element selected and select “Show Points” for a fast way to

batch change multiple points in your page; for instance, if you need to make

Changed points 1 5 identical pages for 5 devices, you can very quickly rename the points for
device 1 as 11, 12, 13 ... 19, for device 2 as 21, 22, 23 ... 29 etc.

Points in picture 10

Save changes | Cancel ‘
mm Make sure to click the “Arrange” button in the —
POINT1 POINTSS bottom left corner of the screen to have access New menu
DATE DATE to some other very useful features of the -
TIME TIME graphics editor. e LR
POINT1 POINTOG Edit object
POINT2 POINTZ Duplicate object
POINTS POINTS Delete object
POINT4 POINT4
POINTS POINTS
LINK LINK MoreToTront
LINK LINK
LINK LINK Move to back
Align left
Align right |

Fidelix FX-RP multiDISPLAY Programming manual page 8 of 41

The FXINDEX page

After you have opened at least one page from the project folder, you can click the “Load” button in the middle
column of the program. This will load the file called “FDXINDEX.HTM” to the centre column. This page is loaded
from your project folder. You can also open this page to easily add links to other pages you make yourself. This
menu is nowhere visible on the multiDISPLAY, it is just a faster way to navigate through the pages in your project

folder. Fidelboc Graphics editor 8.5 -- 03.09.2014
" Fidelix 15:18:56
New file Fidelix Ventilation @
o L AHU]
Open file [AHUset | Lights @
Savele [PX-RPlinks | Temperature 22.7 °C
e | FX-RP master | —
[™RP1/3 | Humidity 23.5 %
[PictireSetingsl| | rcroos |
Change bg picture [FEXRP3/3 | Ll 653 ppm
Remove bg picture
Change bg color Jﬂ
Change CSS file I >
Romore CS5 i ~ Fxindex Tools
ShowPoints [] Auto open
Load |
Object | Save |
New menu Create new |

Be careful when switching from page to page through the menu; any unsaved changes will be lost, and there is
NO popup box to remind you to save changes!

Caution! Trying to load the FXINDEX page x|

without it being present in your working
folder will cause an error like this to pop up, & An error has occurred in the script on this page.
and will cause the editor to completely

freeze or get stuck in an endless loop of Ling: 1378
Char. 9
error report popups.
P Popup Error: Access is denied.
Code: O

The reason for this is because the graphics
editor uses Internet Explorer scripts for its
base functionality (that is why it is so small)
that cannot be stopped from outside of
Internet Explorer,

URL: file:///C:/Projects/multiDISP LAY "demo-box_EMN./Home htm

o you want to continue running scripts on this page?

So, make sure you have the file present
in your working folder before loading it!

< Fidelix FX-RP multiDISPLAY Programming manual page 9 of 41

Editing pages (a few pointers)

Once a page is opened inside the Graphics editor, you can drag elements around with the mouse or with the
keyboard as you like (shift+arrow = 10px movements).

To open the EditPoint window, double click an element or press Ctrl+E.

Note the “border” images at X=320 and Y=240 in many of the example files to indicate how big the
multiDISPLAY is. As they are outside the 320x240 drawing area, the converter will simply ignore them.

Any graphical element can be used, but the naming should follow the conventions like in the “symbols” folder
inside your project folder. (e.g. Filename-0-640.jpg, Filename-1-640.jpg, Filename-2-640.jpg, ...)
Graphical elements have to be either .bmp, .gif (dynamic gifs don’t work on the display), .jpg, .jpeg or .png.

Display points are referenced by their pointlD; POINT1 through to POINT250.
Modbus master points are defined by using “MODBUS:” followed by the configuration of the point in the

pointID input field.

If you want to use a multi-stage image (like the power buttons in the example pages), enter the desired values
through which to toggle separated by spaces in the “Fixed value” field of the EditPoint dialog box:

S - | ' = 27-02-2014
Fidelix 15:18:56
[FEN | P Fidelix —
New file h— Ventilation @
Open file Lights @
Save file FX-RP links Temperature 22.7 °C
Save file as | B editoint -- webpage Dialog x|
emsatingay] | [Pont o Fon |
Change bg picture [’—
— © Bution File batch | Symbols |
Change bg color © Number field |0n-0ﬁ-button-ﬂ-540.png
O Bar display Link ||
o = Fixed value |D1
O Image —
’—@) Symbol \D Hiding
|Backgr0und color |default |Front colorl ‘CSS Classl |User level |D ‘
|x|153 |Y|'IDD ‘wmmho ‘He[ghtl?rﬂ | [¥] Show info
Save | Cancel
- Showing the value of a point is done by either selecting a o -
“Number field” type element, or by ticking the “Show point Point id [POINT46#UNIT %
value” tick box of a “Text” type element. 7 Biiien
— O Number field Value Text
Point id [POINT12 x : : 7 [36.36%
) Bar display ' e
 Button ® Text | |
) Number field Value Text Color
: : 0 o -) Image Bold
O Bar display) Symbol Sh T—_—
ow point value
® Text 1 on] E
) Image Bold
© Symbol 1 Show point value

Showing text based on the value of a point (like for instance on/off, day/night or off / startup / slow / fast /
error) is done by selecting a text type element and writing the desired values and corresponding texts in the
yellow box inside the EditPoint dialog box.

€ Fidelix FX-RP multiDISPLAY

Programming manual page 10 of 41

- Making “+” or “- .buttons can be don(.e .usmg Point id [POINT147

symbols and putting the step value, minimum

and maximum value in the “Fixed value” field) Button File batch | Symbols |
© Number field \value-plus-0-640 png
O Bar display Link |
S lEx Fixed value [+10100
O Image
® Symbol [Hiding

- Important ! Only set the Background colour property to “default” when necessary. This uses more memory,
as the background needs to be calculated every time. Instead, use the page background colour wherever
you can.

For more detailed instructions on how to use the Fidelix Graphics editor, consult the graphics editor's own
reference manual on our partner webpage, and read further in this manual on the FX-RP multiDISPLAY specific
syntax in the detailed programming section.

HTML to Multi Display / Room Display Converter

The program’s Ul

HTML to Multi Display / Room Display Converter - Version: 1.60 - 24.4.2020

Open file

% : d L] -
»,. < Fidelix Sent

u50-card

A0 @

lUse Transparency for Images
lUse Transparency for Text
Mo Wamings

a % A % [] Use Same Background for All Pages

Large Memory {STM32F405)
fimmware w295 or newer needed

Home Schedule Runtime fones

Settings Status Faults Service

Selected font

|Ta|'u:uma e |
Selected font i size ==
|I"-'1usen Sans 300 e |

[] Use fixed symbal path (relative to execttion folder)

- The “Open file” button is used to start the process. Select the .htm page that you want to use as a start page
each time the display is powered on. Also, any links inside your project to “CLOSE”, will direct the user to this
page.

The converter can also be used to check how much memory a single image will take after conversion. Instead
of opening an .htm file you simply open the image and the converter will check how much memory will be
needed using different packing methods. The best packing method is automatically selected during the
conversion.

¢ Fidelix FX-RP multiDISPLAY Programming manual page 11 of 41

The “Send to ySD-card” button copies the conversion result to a removable memory device containing a
“UserFiles” folder.

NOTE: When using an empty uSD card for the first time, a folder called “UserFiles” must be created manually,
or the “UserFiles” folder, generated by the converter must be copied manually.

NOTE: The converter program searches for a Windows removable memory drive that has a folder called
“UserFiles” in its root alphabetically. This means that, for instance, if there is a drive “G:” that contains another
memory card which also has a “UserFiles” folder, this folder will be overwritten.

The “uSD-card” tick box should only be selected (ticked) if you want to use the project from a ySD memory
card. When not ticked, the project size is limited to 768 kB (256 kB for V1 displays) and all project files will
be copied into the FX-RP multiDISPLAY’s internal memory upon startup of the display. A uSD-card can be
used for projects that are bigger than the internal memory, in which case only the font files need to fit into the
internal memory of the FX-RP multiDISPLAY. By checking the uSD-Card checkbox, the converter will not
make one file of the project, to be loaded into the internal memory, but instead, will generate a file containing
only the used fonts. This is however, NOT recommended for actual installations. Instead, try to optimise the
memory usage of your graphics (see Minimising binary file size).

During development however, it IS recommended to use the “uSD-card” feature. This will speed up the
starting of the display as only fonts need to be loaded into the memory.

During commissioning the tick box should not be ticked. Make a final conversion and copy the project
onto a uSD card. Now, simply put the uSD card in the display, power up the display and wait for a few seconds
while the project is loaded into the internal memory. Then, take the power off the display, remove the uSD
card, and power up the display again. You are now running your project from the internal memory.

The “Use Transparency for Images” selection defines if you want to have transparent background for images.
The loading of images takes more time if a transparent background is used. If not selected then instead of
transparency, the page’s background colour is used.

The “Use Transparency for Text” selection defines if you want to have transparent background for text. The
loading of text takes more time if a transparent background is used. If not selected then instead of
transparency, the page’s background colour is used.

The “No Warnings” selection discards some not so important warning messages during the conversion
process.

The “Use Same Background for All Pages” selection is used if you want to have the same background image
for all pages. This saves memory and helps to keep project size under 768kB. When using this feature, you
have to define all objects as active object, because all static objects are discarded in this case. This means
that for example you may define the page title as text object having pointID “Title”, in which case it is generated
as an active object, but not linked to any physical register.

The “Large Memory (STM32F405)” tick box should be ticked when you are converting a project for a V2
display (so, purchased later then 2016). This will allow for the full memory to be used. If you are converting a
project to be used with a V1 display, which only has 256 kB of memory available for projects, make sure the
box is unticked.

Two fonts can be selected for “small texts” and “large texts”. Tahoma is always the recommended font.
NOTE: The FX-RP multiDISPLAY does NOT support edge softening for any text or number. This means that
fonts and texts will look differently on the display than on your computer. Please make sure to thoroughly test
any font you want to use with all available characters and sizes before handing over the project to your
customer.

Fidelix FX-RP multiDISPLAY Programming manual page 12 of 41

Converting HTML files to the DISPLAY format

The HTMLtoDisplay program is used to convert HTML files to the format supported by the FX-RP multiDISPLAY.
Conversion is started by opening the .htm file of the project’s main page. This is the page that will show up when
the display is power up, or when a link pointing to “CLOSE” is used. The converter will go through the links in
the page and any linked page. This means the converter needs to be started only once. If any dead links are
found, the process will be aborted. During conversion, the results will be stored into \UserFiles folder.

This means that if you want to have pages that are forced to show up by the Modbus master, but that cannot be
accessed through the normal Ul, you have to include a “hidden” link somewhere in the project. This hiding can
be done -for instance- by having a password protected settings page with on it a 1x1 pixel link that uses the
“Hiding” feature. This way the chances of accidentally opening that page are reduced to almost none.

Windows zoom settings and the converter

The converter works in such a way, that it loads each page, and then takes a screenshot of your actual computer
screen. This means that during conversion, no other windows are allowed inside or on top of the converter
window, as whatever is placed on top, will be visible on the display.

Make sure to set the Microsoft Windows zoom or scale factor to 100% in the Windows settings:

= » Control Panel » All Control Panel lterns » Display

Control Panel Home . . .
Make it easier to read what's on your screen

You can change the size of text and other items on your screen by choosing one of these options, To

Adjust resolution - ; -
temporarily enlarge just part of the screen, use the Magnifier tool.

Adjust brightness
By Calibrate color
. . @ Smaller - 100% (default) Preview
Change display settings

Connect to a projector

Adjust ClearType text Medium - 125%

Settings Set custom text size (DPT)

Larger - 150%
B Home |:)|sp|ayr
(V)]
Find a setting
Night light

@ off

Scale and layout

Motifications & actions

Chanage the size of text, apps and other items

Power & slee
sieep ommended)

Battery

Storage Resolution

1920 x 1200 (Recommended)
Tablet mode

Fidelix FX-RP multiDISPLAY Programming manual page 13 of 41

Having the wrong zoom factor will result in a converter

window looking like this:

Troubleshooting the converter

............

The converter works using a lot of embedded Windows and Internet Explorer features. This unfortunately also
means that it is recommended to do only 1 single conversion, and then close the program. You will easily
encounter program crashes when doing multiple very similar conversions. In that case, it might happen that an
instance of the program stays in the computer memory, even while visually closed. In such a case, start the
Windows task manager and manually stop the “BMPconvert” process:

i@ Task Manager

File Options View

Processes Performance App history Start-up Users Details Services

. 2% 27% 0% 0%
Marne CPU Mernory Disk Metwork
A
Apps (5)
P4 BMPconvert 0% 10.0 MB 0MB/s 0 Mbps
ﬂﬂ Microsoft Qutlook (2) 0% 68,2 MB 0.1 MB/= 0 Mbps
E| Microsoft Word 0% 69.8 MB 0MB/s 0 Mbps
17 Task Manager 0.7% 15.6 MB 0 MBys 0 Mbps
1 Windows Explorer 0.5% 36.9 MB 0MB/s 0 Mbps
W
(~) Fewer details End task

):(Fidelix FX-RP multiDISPLAY

Programming manual

page 14 of 41

Getting projects on the multiDISPLAY

Projects can either be loaded into the internal memory of the multiDISPLAY, or be stored on a ySD card. The
advantage of the internal memory is its speed, the advantage of the uSD card is its size. Most projects will easily
fit into the internal memory of the FX-RP multiDISPLAY, but for complex, extensive graphics with many pages,
if might be necessary to use a ySD memory card.

We recommend using the internal memory as long as this is possible, because this will limit the number of read
operation from the uSD card and thus guarantee a longer life span of your project.

Loading projects into the FX-RP multiDISPLAY’s internal memory

Make sure that when you want to use the graphics from the FX-RP multiDISPLAY’s internal memory, the “uSD-
card” tick box is NOT ticked. When the box is not ticked, the converter will generate 1 file that contains the whole
project and that will be copied into the display’s internal memory. When the box is ticked, the same file will only
contain the used fonts of the project, and links to the files on the uSD card.

With an FX-controller

From an FX-Controller it is possible to load the generated binary file to the FX-RP multiDISPLAY through the
module update feature on the controller (> Programming > Module versions). In order to see the graphics in the
list, copy the generated “MULTI-DISP.dat-xxxx” file you will find inside the “UserFiles” folder on your PC to the
\HDisk\Fidelix\DATA folder on the FX. Note that this folder is different than the one used for firmware updates.
The module update feature can also be used to update graphics of FX-RP multiDISPLAYs connected to a
multi24’s external bus. This feature is called “pass-through”. To enable the pass-through feature, the “MULTI-
DISP.dat-xxxx” file name has to be changed to have the PASSTH-XX- prefix, where XX is FX-RP
multiDISPLAY’s Modbus address on the external bus. For example, when uploading a project to an FX-RP
multiDISPLAY, connected to the external bus of a multi24 on address 10, the file name should be “PASSTH-10-
MULTI-DISP.dat-xxxx”. New files copied to the \hdisk\fidelix\data folder will automatically show in the firmware
selection frame.

With a multi24 module and a PC

Using the multi24 programming tool, the same “.dat-xxx” files can be selected in the “Display graphics” section.
The program will then ask the Modbus address of the display and the multi24 will be used as pass-through
handler.

With a uSD memory card

It is possible to update the internal memory from a uSD-card, formatted in FAT32. During the power up
sequence, the FX-RP multiDISPLAY will check if a “MULTI-DISP.dat-xxxx” file is found on the ySD-card and if
found the file is copied into the internal memory. After that, the uySD-card can be removed, and the display
restarted (power off and back on). From then on, the internally stored pages are used. The advantage over using
the graphics from the uSD card is the obvious lower number of reads from the uSD card, but mainly the speed.

Make sure to verify if your FX-RP multiDISPLAY is of the first generation or the second, as the available memory
is tripled in the V2 displays. In the converter, you can tick the “Large Memory (STM32F405)” tick box when you
have a V2 display so the converter will allow you to convert larger projects.

Using graphics from a uySD-Card

During the development stage of graphics or when your project doesn't fit the internal memory, you can use a
pNSD-card to store graphics. To do so, tick the “uSD-card” tick box in the converter and copy the generated
“UserFiles” folder to the uySD-card using a memory card reader. Insert the card into the memory card slot of the
FX-RP multiDISPLAY and reboot the FX-RP multiDISPLAY.

By using a ySD-card you can quickly test if graphics are working as expected without the need to load images
into the internal memory of the FX-RP multiDISPLAY. A uSD-card also needs to be used if more than 768 kB
storage space is needed.

While possible, it is NOT recommended to use graphics from a memory card. Instead, try optimising your
graphics (see Minimising binary file size).

Fidelix FX-RP multiDISPLAY Programming manual page 15 of 41

When using a ySD memory card, please make sure you are using cards of good quality from a trustworthy
manufacturer. SDXC cards are not readable by the FX-RP multiDISPLAY. The memory card should be formatted
in FAT32. A good reference list for memory cards’ quality can be found here: https://elinux.org/RPi_SD cards.

Minimising binary file size

If your project does not fit into the 768kB (or 256 for V1 displays) reserved for internal data storage, you may
either use a uSD-card for data storage (not recommended) or try to optimise your project to use less memory.
Here are some tips to keep your total project size as small as possible:

- Do not use more than 255 colours in images. The easiest way to accomplish this, is to convert your images.
The embedded compression of the converter only works with < 255 colours. Any images using more than
255 colours will not be compressed at all.

- Do not change the image size using object properties. Instead use the real height and width of the image.

- Minimise the colour count in pictures. Large areas using a single colour will not take much memory. Even if
the colour count is less than 255, more memory is needed if more colours are used.

- For dynamic objects, use Text size 12. The “bold” option can be used. Font size 12 is embedded in the
firmware, all other font sizes will take up space from the internal memory.

- If a larger font size is needed, keep in mind that a larger font size takes more memory than a smaller. So do
not use larger fonts than needed.

- Minimise different font sizes used. Every different font size uses some space of the memory.

- Try to have only “active” elements; this will make the background image easier and thus smaller. You can
make an element active by giving it a PointID. Make sure not to use a significant one already in use, like
“POINTxx”, “LINK”, but rather go for something like “UNUSED_ELEMENT” or “IMAGE”.

MUItipIe projects on one pSD-Card B EditPoint-- Web page Dialogue
Multiple graphic projects can be stored on a single | pgint iq [Link
puSD-Card. This feature is useful if you have many
language versions of the same project or for
demonstration purposes. Links to a different Value Text
project folder can be defined with 7 loadC3
“PATH:UserFiles_xxx” syntax in the link field as '
shown on the right. | |
' ' Button | |
The folder name should be “UserFiles_xxx” where ||~ Number field
xxx can be anything you want. The last character | - _ | |
of the folder name is loaded into register 3013, so | ' Bardisplay
the Modbus master can detect which project is | ® Text Bold
loaded. The FX-RP multiDISPLAY demo projects ||~ Image [] Show point value
folder contains an example project folder named =
“multi language example” which will help you on | & Symbol [Controller set value ?
your way.
Additionally, instead of using L [PATHUserFiles_C3

“PATH:UserFiles_xxx”,
“‘LOCKPATH:UserFiles_xxx” can be used. The difference is that with “LOCKPATH”", the folders on the uSD card
get renamed. The original “UserFiles” folder will be named “UserFiles_orig”, and the folder in the link will be
renamed “UserFiles”. Note that because of this, you can only use “LOCKPATH” once with each uSD card.

The main use of the “LOCKPATH?” feature is to be able to send out displays with ySD cards and only choose on
site what program will be loaded. If the selectable projects are compiled to fit in the internal memory of the FX-
RP multiDISPLAY, selecting them will load the desired project into the memory, and the uSD card can then be
removed, making this a very useful feature for situations where you don’t know in advance with what equipment
the FX-RP multiDISPLAY is going to be used.

Fidelix FX-RP multiDISPLAY Programming manual page 16 of 41

https://elinux.org/RPi_SD_cards

Uploading a project via Modbus

Graphical pages stored on the FX-RP multiDISPLAY’s internal memory or on the uySD can be updated through

Modbus registers 65278 — 65343 by any Modbus master:

65278 - 65341 64 data registers
65342 statusCPU | status from substation
65343 statusDISP | status to substation

1) To start a transfer, the master sets statusCPU register to 0xAAAA (upload request)

(ready for download)

2) statusDISP receives 0x0000 from the display and the display will read "Loading data..."

(uploading part 1)

3) Modbus master sends the first 128 bytes of the bin file and sets statusCPU to 0x0001

4) statusDISP receives 0x0001 from the display (download part 1 completed)

(uploading part 2)

5) Modbus master sends the next 128 bytes of the bin file and sets statusCPU to 0x0002

6) statusDISP receives 0x0002 from the display (download part 2 completed)

) ... (repeat until the file is sent)

n-1) | Modbus master sets statusCPU to 0xBBBB to signal that file is sent (upload completed)
n) statusDISP receives 0x2222 from the display (download completed)

statusCPU (written by master)

OxAAAA Initiate a file transfer (requested upload)

0x00** Counter for which part we are sending (uploading part x)

0xBBBB Last part of the file was sent (upload completed)

statusDISP (written by Display)

0x0000 ready to receive the file (ready for download)

0x00** counter for which part was received completely (downloading part x)
0x2222 finished receiving the file (download completed)

Detailed programming

Introduction

The .htm pages that will constitute your FX-RP multiDISPLAY project consist of so called “active elements” and
background images. Any element (text or image) you place inside the 320 by 240 pixels available space that
doesn’t have a PointID (= “Unknown”) is considered and treated as background image.

To see the pointlD of any element in the
Fidelix Graphics Editor, either double click
the element, or press CTRL+E.

Any element that does have a PointlD
(keywords mentioned later, or freely chosen
by yourself) will be placed on top of that
generated background image.

When used as Modbus slave, each of the

250 available points will look something like |) Number field

the image on the right. '.::;. Bar display

The text used in the yellow part is to 1) | @ Text

define the number of decimals and the unit | =

displayed, 2) help to get the graphics correct |!
during design. O Symbol

Point id |F-‘OINT'I#UNITSF‘ACE#INFO:ROOM_SETF‘OINT

Value Text

? 1235°C

; ' [Bold
|| [Show point value
| | [#] Controller set value ?

Ticking “Show point value” will enable the

displaying of the actual value of the point or register mentioned in the PointID field.

Fidelix FX-RP multiDISPLAY Programming

manual

page 17 of 41

When not ticked, the middle column needs to contain the texts that will be shown, when the point has the
corresponding value specified in the left column (see “Status texis”).

Point id |POINT7#INFO:AHU_STATUS

Value Text Color ™
oo |
1 fon .
() Button 5 [Auto -
0 Number field 5 [Error B -
 Bar display
® Text Bold Text size |16
O Image [Show point value Border [Inset |v|
) Symbol [Controller set value ? Border Color |default

Left ||

Many projects will have more than 1 page. A link can then be made to other pages (see “Links”). Only “text” or
“Symbol” elements can be used to link to other pages by adding the name of the target page. In the “LINK” box
of an active element. A link can only be used from an active element, so if your element has no other functionality,
you can simply use “LINK” as PointID.

When used as Modbus master, the pointID will be used as the field to enter the correct parameters for each of
the slave registers. The syntax is described later in this document.

Visualisation customisation

Any field of “text” or “Number field” type can be used to set values. In order to do so, “Controller set value” has
to be selected in the EditPoint dialog box to make a point’s value editable from the FX-RP multiDISPLAY.
A number keypad will appear when the field is clicked, and the selected value is then attributed to the point.

Using the “Background color” selection box, multiple partially transparent elements (Symbols using a gif or png
file with alpha channel) can be on top of each other, where the element “beneath” can by dynamic too. Always
use a fixed colour unless you really need the transparency, as this uses more calculation power.
Transparency is calculated for the zero-value element, and a new symbol is drawn on top of the existing one
without clearing it, meaning that different shapes for the element on top might not work as expected.

Instead, elements can change colour, or you can have a circular element with different symbols on top of it. The
transparency feature is especially interesting for writing values on top of a large element that can change colour
based on the status of the process that is being visualised.

The functionalities described m—

hereunder are to be used by ﬁ oint id |POINT243#BYTET

appending the according tag behind Butt
on

the “POINTxx” identifier in the |O

pointID field of the EditPoint dialog box (as shown on the image). Features (and thus the ‘tags’) can be freely

combined in any order.

File batch | Symbols |

NOTE: The content of any register can also be shown by using the point ID “REGxxxx”.

Fidelix FX-RP multiDISPLAY Programming manual page 18 of 41

You can choose to show the value of a point, or to display a text according to the point’s value. Showing the
actual value is done by either selecting a “Number field” type element, or by ticking the “Show point value”
tick box of a “Text” type element. Ticking the “Controller set value ?” tick box will generate a popup on the
display when the value is clicked. Note that the user can now enter any desired value, so it is up to the
connected controller to evaluate this user entered value.

_ o _ Point id |POINT1
Showing text based on the value of a point (like for instance

on/off, day/night or off / startup / slow / fast / error) is done || Buiton Value Text Color
by selecting a text type element and writing the desired || Numberfield 0 Df [
values and corresponding texts in the yellow box inside the ||~ o

O Bar display 1 on R

EditPoint dialog box.
More details can be found in the “Status texts” section later

in this document. O Image 3 Eror |

To use a multi-stage image (like an “on/off” power button), enter the desired values through which to toggle
separated by spaces in the “Fixed value” field of the EditPoint dialog box:

® Text | 2 | Auto |

Point id [PONT2

O Button File batch | Symbols |

O Number field |on-of-button-0-640.png
O Bar display Link |
O Text Fixed value [0 1

O Image =
|—© Symbol |EI Hiding

‘Background colﬂrldefault ‘Front ::olorl |CSS Classl ‘User level |D ‘

X[z [v[i0 |width[o |Height5o | &2 Showinfo

Save | Cancel

#UNIT:xx where xx is the unit that is used to show the point. These units can either be programmed by the
Modbus master (like it is done if the FX-RP multiDISPLAY is used with an FX controller or a multi24), or can
be defined in the EditPoint dialog box in the graphics editor.

For text type fields, the unit can also be defined in the “Text” field, in which case the unit is parsed from the
end of the text. For example, “21.0°C” will define one decimal precision and degrees Celsius as unit.

NOTE: A unit cannot be freely selected. The FX-RP multiDISPLAY firmware has a predefined list of units that
can be used. If you need a unit that is not listed please contact us, and the needed unit can be added to our
next firmware release. List of currently available units: "°C", "Pa", "bar", "V", "l/s", "m3/h", "%", "m3", "I", "mA",
"Wh", "kWh", "MWh", "ppm", "K", "s", "min", "h", "Hz", "W", "kW", "MW", "Lx", "km/h", "°", "°/s", "I/h", "I/100km",
"%Rh", "ohm", "N", "kg", "ms", "hPa", "W/m?", "mm", "cm", "km", "m", "€", "€/kWh", "A", "°F", "CFM", "GPM",
“%LIE”, “%LEL”, “Y%vol”, “m3/s”, “rpm”, “m/s”

#UNITSPACE can be added to put a space between the value and the unit. The default setting has the unit
directly concatenated behind the point’s value.

Fidelix FX-RP multiDISPLAY Programming manual page 19 of 41

#DIVIDER:xx where xx is used divider. 10
for 1 decimal, 100 for 2 decimals, 1000 for 3
decimals. .:':. E!uttn]n

Point id |POINTB#DIGITS:3#UNIT:M3#DI"JIDER:‘IDI}D#INFO:‘ X

REMINDER: For text type fields, the unit | © Numberfield

can also be defined in the “Text” field, in | C Bardisplay 5
which case the divider is parsed from the O Text Controller set value
end of the text. For example, “21.0°C” will -
define one decimal precision and degrees =

Celsius as unit.

O Image
) Symbol

#DIGITS:xx, where xx is maximum 15. It defines the number of digits before the decimal sign. If the value is
bigger than the number of digits specified, the full value will be displayed.

#MIN:xx where xx defines the minimum allowed value for the point. It is useful if for example a set point’s
minimum value needs to be defined. Note that this value is before division, for example if one decimal is in
use and you need to limit the minimum value to 10.0, use parameter “#MIN:100”.

#MAX:xx where xx defines maximum allowed value for the point. It is useful if for example set point’s
maximum value needs to be defined. Note that this value is before division. For example, if one decimal is in
use and you need to limit the maximum value to 100.0, use parameter “#MAX:1000".

#NOSCALE hides the low, middle and high values for a “Bar Display” point. You can use for example text
objects to define the scale, or leave the scaling out completely. The hiding is particularly useful when your
value has decimals, as the Low, Middle and High values are before division, for example if one decimal is in
use and you need to limit minimum value to 10.0 use parameter “#MIN:100”. The Middle value can be omitted,
and even HAS to be omitted when using this combined with the “#NOEDIT” tag.

#NOEDIT makes a Bar Display element only show a value, whereas by default, a bar display element can
also be used as a slider to get a set value from the user. When this tag is used, the middle value of the Bar
Display element needs to stay empty, as it is being used as container for the returned value, so #NOEDIT
should always be used in combination with #NOSCALE.

#INFO:xx, where xx is free text that will be added as a comment into the IEC code file that the converter
generates. This will only make the IEC code file easier to read, there is no real functionality connected.

#BYTE1, #BYTEZ2, #BYTES, #BYTE4 gives access to the different bytes of the point’s value. As each point
has two registers for its value (see below for more detailed register structure), BYTE1 represents the least
significant byte, BYTE4 the most significant. Values are displayed as decimal values from O to 255.

#BITO, ..., #BIT31 gives direct access to each bit of the point’s value. BITO represents the least significant
bit, BIT31 the most significant.

#BITGROUPxx:yy, where xx is the number of bits (2..6) you want to visualise and yy is the first bit of that
group (0..30). The groups are allowed to overlap

Example: POINT1#BITGROUP3:0 will show the three lowest bits of POINT1 (bit2, bit1 and bit0)

Example: POINT2#BITGROUP5:14 will show five bits, beginning at bit 14 of POINT2 (bit18, bit17, bit16, bit15
and bit14)

#MOMENTARY:xx can be used to send out ‘impulses’ of ‘xx’ ‘Point id [POINT2#MONENTARY 7

seconds from a Modbus slave display. This should be used

in combination with the ‘fixed value’ box in the EditPoint ||C Button File batch | Symbols |
dialog box. Pushing the button in the example will set ||C Number field |power-button-0-640.png
POINT2 to ‘1’ for 7 seconds, after which the first value, ‘O’ will | |C Bar display M|

be set back to POINT2. Be aware that there is no checking | |O Text Fixedvalie[l1
done if the master has received the impulse; the display | |0 Image

merely sets the value for the defined time. This function is | [@ symbol | Hiding

only available during slave mode operation.

Fidelix FX-RP multiDISPLAY Programming manual page 20 of 41

IEEE-754 Floating Point format

Normal points on the display are represented as 32-bit values covering two consecutive registers. If the
connected Modbus master is however sending out values as floating point values, the aforementioned
‘REGxxxx” syntax can be used with addition of “:FLOAT” or “REV_FLOAT”, where “REV_FLOAT” is used when
the registers are in reversed order. The register number in the pointID is the first of two consecutive registers
used for the floating-point value.

Point id |REGDD‘I5:REV_FLOAT#DIVIDER:1DDD Point id |REGDS'I2:FLOAT#DIVIDER:'ID

Pay close attention to the registers attributed to POINTS in the display; you can use a mix of POINTx and
REGyyyy pointID’s, but each POINT uses three registers (see the register structure later in this document).

NOTE: when using floating point values, the values shown are READ-ONLY and no other graphical elements
can be attributed to it. So only the actual received value can be visualised.

Increment, Decrease, Minimum & Maximum

When a symbol or button is selected, this .
can be used to increment or decrease the |F’c]|r1t id |F‘OINT1
value of a point. For this, the pointlD just |O Button

contains the point name (e.g. POINT145),

File batch | Symbols |

and in the “Fixed value” field, 3 numbers, | O Number field [value-plus-35px-0-640.png
separated by spaces, define the |O Bar display Link ||

incrementation or decrementation step, the | O Text
minimum value and the maximum value a

Fixed value |+1 1100
push on the symbol will trigger (e.g. writing | O Image

“+1 0 100" means you will increment the |@ Symbol ||:| Hiding

point’s value with steps of 1 to a maximum
of 100). #MIN and #MAX in the pointID field have no influence here, and are ignored, so it best to omit them
completely. Note however that the minimum and maximum value you define in the “fixed value” field must not
only be adjusted to the point’s #DIVIDER (so it is the value before division), but will also overrule any #MIN and
#MAX value you define in the actual displaying of the point’s value.

Special symbols can be defined for points with #MIN and/or #MAX values defined in the pointID field of the
EditPoint dialog box: the symbol with name formatted as “NameOfTheSymbol-min-640.gif’ will be displayed
when the point’s value = #MIN, the symbol with name formatted as “NameOfTheSymbol-max-640.gif” will be
displayed when the point’s value = #MAX, the symbol with name formatted as “NameOfTheSymbol-0-640.gif”
will be displayed when the point’s value = zero (this image will be shown if #MIN or #MAX = zero), and the
symbol with name formatted as “NameOfTheSymbol-mid-640.gif” will be displayed when the point has any value
other than #MIN, #MAX or zero.

You can also use other points as minimum and
Point id [POINTT maximum. In that case, both minimum and
O Button et | Symbols maximum need to.be points, .m.eaning it is. not
o —— allowed .to_have a fixed l_Jpper limit a.n(_i a variable
: : [value-plus-0-640.png lower limit. When using the minimum and
© Bar display M| maximum like that, make sure you don’t allow the
O Text Fixed value |5 POINT2 POINT3 user to enter values that are not possible; often
O Image you’ll want to set these dynamic minimum and
® Symbol [Hiding maximum values from the Modbus master and not
show them on screen at all.

Math operators

Display points can also contain a locally calculated value based on 2 other points. Know that all values are
considered as integers, so divisions shown on the screen are not taken into account, and any value for a division

Fidelix FX-RP multiDISPLAY Programming manual page 21 of 41

smaller than “1”, will give you the result of zero. You can use math operators for instance to calculate the local
setpoint for a building-wide general, dynamic setpoint with local offset, or to let the end-user enter the water or
energy price they pay, and, by simply sending the actual consumption to the screen, show the price that needs
to be paid.

To use math operators, simply add a suffix to the pointID field:
POINTxx#MATH:POINTyy+POINTzz

POINTxx#MATH:POINTyy-POINTzz |
POINTxx#MATH:POINTyy*POINTzz
POINTxx#MATH:POINTyy/POINTzz

Point id |F‘OINT3#MATH:F‘OINT'I+F‘CIINT2

This function is only available during slave mode operation.

Status texts

By default, the number of different [4 PonTias

texts for fixed values (so called

“Status Texts”) is 20. These are texts 3
like “On, Slow, Fast” that you can Yaiho. 1cw i
define in the yellow box of the L o I
EditPoint dialog box when editing a | I [on |

Text type element. This is useful | = BUfion 2 [Auo =
when you for instance make a button > Number fieid | | | R
with three statuses (0, 1 and 2) and) Bar dispiay : . ——
you want to have a text changing | © Tex b Bl G
accordingly to show the end user Image L] Show point value Border [Solid (V]

what status the button is currently in. '+ Symbol [Controller setvalue ? Border Color Il

Make sure you untick the “Show
point value” tick box to show the entered texts.

The Graphics editor limits the number of these statuses to 20, but you can add more by creating a file inside
your project folder containing the texts for each status. The file is linked by writing its name in the second “Text”
box like this:

Point id [FOINTTH

The content of the linked .txt

file should be formatted as i’
follows: Value Text Color
0, value zero, #000000 I'? Imultiple state texts example| -

1, first text, #000000 'O Button [P [ryoutsa] 5
2, second teXt, green O Number field . =
3, third text, #000000 } O Bar display L] Bold Text size [12

4, fourth text, #000000

] Show paint value

Border

‘@TEH R s

L A N N T Py |

where you first write the value, then the texts to show on the display and then the HTML colour code.

Status texts take up memory upon the loading of a page. All texts are loaded into memory when the page is
loaded. That is why you can share status texts between points to save memory space. This is done by using
100000000 as the first status value for all the points with which you want to share the status texts. One of those
points will then be stored into the memory, and all others only referenced. Make sure to copy all status texts into
all points you want to use them in, as you cannot know of which point the status texts will be loaded into the FX-
RP multiDISPLAY’s memory.

Using this feature is only necessary if you notice the page loads very slowly, or if you actually get an “out of
memory” message when the page is loaded. It is possible to combine this feature with the previous one to have
multiple points with more than 20 possible status texts, like, for example, when you are making a text input page.

Fidelix FX-RP multiDISPLAY Programming manual page 22 of 41

Time and date, temperature, firmware version and Modbus address

Time, date, locally measured temperature and the display’s firmware version and Modbus address can be
displayed in various ways:

pointiD Further customisation in “Text” field of the “EditPoint” dialog box Result
TIME n/a 16:23:45
TIME2 n/a (also available in registers 3004+3005) 16:23
TIME3 hh /HH 24h / 12h (without leading zero)

mm minutes (always with leading zero)

ss seconds (always with leading zero)

tt AM / PM

dd day (without leading zero)

MM month (without leading zero)

vy ! yyyy Year with 2 or 4 digits

other characters displayed as written (h, m, s, t, d, M, y, or x not allowed)
TIME4 hh/HH - xh/xH | 24h / 12h (with leading zero - without leading zero)

mm minutes (always with leading zero)

ss seconds (always with leading zero)

tt AM / PM

dd / xd day (with leading zero / without leading zero)

MM / xM month (with leading zero / without leading zero)

vy ! yyyy Year with 2 or 4 digits

other characters displayed as written (h, m, s, t, d, M, y, or x not allowed)
DATE n/a (also available in registers 3001+3002+3003) 03.09.2014
VERSION n/a (also available in register 3018) 1.32
TEMPERATURE n/a (also available in register 3000) 20.0°C
TEMPERATURE_CO n/a 20°C
TEMPERATURE_CA1 n/a (also available in register 3000) 20.0°C
TEMPERATURE_C2 n/a (also available in register 3015) 20.00°C
TEMPERATURE_F n/a 68.0°F
TEMPERATURE_FO n/a 68°F
TEMPERATURE_F1 n/a 68.0°F
TEMPERATURE_F2 n/a (also available in register 3014) 68.00°F
MODBUS_ADDRESS n/a 10

A few examples of how the time and date will be displayed with below configurations in the EditPoint dialog box:

Point id | TIME3 Point id [TIME4

) Button) Button

O Number field || Value Text O Number field | || Value Text

O Bar display ? |dd/MM/yyyy - hhmm O Bar display ? ixd/MM/"yy - xh:mm
DD/MM/YYYY - HH:MM [[©/ Text L O i |
23/09/2023 — 08:15 23/9/2023 — 8:15 23/09/°23 - 8:15
06/03/2022 — 18:45 6/3/2023 — 18:45 6/03/°22 — 18:45

Point id | TIME3 Point id [TIME4

) Button) Button

O Number field | | Value Text O Number field | || Value Text

O Bar display g IMM-dd-yy HH:mm tt O Bar display ? ped-xM-yy xH:mm
DD/MM/YYYY - HH:MM ® Text | | ® Text | |
08/05/2023 — 18:15 5-8-23 6:15 PM 8-5-'23 6:15
26/11/2024 — 09:01 11-26-24 9:01 AM 26-11-"24 9:01

Fidelix FX-RP multiDISPLAY Programming manual page 23 of 41

Internal time schedules

The FX-RP multiDISPLAY has 5 internal time schedules, which can be accessed either from the settings page,
or by making links to them yourself (see below, “Links”). Time schedules cannot be edited by an external Modbus
master or slave, only from the local user interface. Time schedules can have any status from 0 to 15, though
mostly only 0 and 1 are being used. You can of course attribute any action on your Modbus slave or master to
any of the 16 available values.

NOTE: Time schedules hold their value, as long as no event is encountered that will change their value. This
means that for instance, when you only select weekdays, but leave the time schedule at value 7 as your last
entry on Friday, the time schedule will stay at 7 throughout the weekend.

You can change this behaviour and have the display reset the internal time schedules to zero at midnight for the
unselected days by including a file named “timeschsetup.txt” into your project, containing a single line
“SET_UNUSED TIMESCH_DAYS_TO_ZERO?”. Save this file in the root folder of your project and run it through
the converter (version 1.39 or higher).

You can make your own graphics for the time schedules, to make them correspond better to the rest of the
project layout and graphical style. For this, use following pointIDs:

Day selection:
0 = not active

1 = active

TIMESCH1_MON
TIMESCH1_TUE
TIMESCH1_WED
TIMESCH1_THU
TIMESCH1_FRI
TIMESCH1_SAT
TIMESCH1_SUN

TIMESCH5_MON
TIMESCHS5_TUE
TIMESCHS5_WED
TIMESCH5_THU
TIMESCHS_FRI
TIMESCHS_SAT
TIMESCHS5_SUN

Time schedule status:

Any integer value from 0..15

TIMESCH1_STATEA1
TIMESCH1_STATES
TIMESCH1_STATEZ2
TIMESCH1_STATEG6
TIMESCH1_STATES3
TIMESCH1_STATE7
TIMESCH1_STATE4
TIMESCH1_STATES

TIMESCHS5_STATEA1
TIMESCHS_STATE2
TIMESCHS_STATES
TIMESCHS5_STATE4
TIMESCHS_STATES
TIMESCHS_STATEG
TIMESCHS5_STATE7
TIMESCHS_STATES

Time:

Hours are in 24-hour format

TIMESCH1_HOUR1
TIMESCH1_MIN1
TIMESCH1_HOUR?2
TIMESCH1_MIN2
TIMESCH1_HOURS3
TIMESCH1_MIN3
TIMESCH1_HOURA4
TIMESCH1_MIN4
TIMESCH1_HOURS5
TIMESCH1_MINS
TIMESCH1_HOURG
TIMESCH1_MING
TIMESCH1_HOUR?
TIMESCH1_MIN7
TIMESCH1_HOURS
TIMESCH1_MIN8

TIMESCHS5_HOUR1
TIMESCHS_MIN1
TIMESCH5_HOUR?2
TIMESCHS_MIN2
TIMESCH5_HOURS3
TIMESCHS5_MIN3
TIMESCH5_HOURA4
TIMESCHS_MIN4
TIMESCH5_HOURS
TIMESCHS5_MINS
TIMESCHS5_HOURG
TIMESCHS5_MING
TIMESCH5_HOURY7
TIMESCHS_MIN7
TIMESCH5_HOURS
TIMESCHS_MIN8

To show the current value of a time schedule on the screen, use REG3007 through to REG3011 as your pointID
to show the value of time schedules 1 through to 5 (see display parameters).

Only this current value (or “output status”) of the time schedule is available over Modbus. All setup mentioned
in the above table is only available on the local screen of the FX-RP multiDISPLAY.

Fidelix FX-RP multiDISPLAY Programming manual page 24 of 41

Links

Links can be specified from any active point, by selecting the ‘pomt id [LINK
targeted page in the link field of an object. If there is no point
attributed, but you just want to make a link, use “LINK” as the
. . o Value Text
pointlD. Note that some of the visualisation features may not -~ v
work when adding a link to an element that also has other I [Setings
uses. (e.g. when using “REG3007” as pointID and a symbol ||© Button | |
to represent the value of the register, adding a link to the |[|O Number field 1 Bold
symbol, will disable the changing of the symbol. O Bar display 01 Show point value
- If “CLOSE” is specified in the link field of an object, it will T [] Controller set value ?
automatically link to start page of the project. O Image
O Symbol _
- If“TIMESCH1”, “TIMESCH2”, “TIMESCH3”, “TIMESCH4” Link |
or “TIMESCH5” is specified in the link field of the object, [Settings_Main him

the corresponding time schedule page will be opened.

If “NAVIGATEBACK?” is specified in the link field of the object, the link will go to previous page. Navigate back
will list up to 4 previous pages. Pressing a “CLOSE” link will clear the navigation history.

If “MODBUS” is specified in the link field of the object, a Modbus master status page is opened. Do not use
this when the display operates in slave mode, as this will open a page with only zero values, since there is
no Modbus master communication happening.

If “CALIBRATION?” is specified in the link field of the object, the calibration of the screen is triggered. After the
calibration through this link, the display will go back to the page the link was triggered from, and NOT go into
the settings page (like it does when you trigger the calibration by pressing in the same spot on the display for
10 seconds).

If “DISPLAY_SETTINGS?” is specified in the link field of the object, the link will go to settings page immediately
(a page otherwise brought up by long pressing on the same place on the multiDISPLAY).

Dynamic links can be created by using the value of a display POINT to select the page to navigate to.

Writing “#POINTxx” after the page |Pointid|PO|NT3Er

name in the link field will direct the user

to the spe(cified page_VaIue-Of—The; |O Button | File batch | Symbols |

Point.htm (e.g. when the value o | navigate-next-0-640.png
_ . . O Number field

POINT29 = 5, a link made by using | Bar displ Link Iuserpages.htm#F‘OlNTZE

“linkedpage.htm#POINT29” will || © Bardisplay _

navigate the user to linkedpage_5.htm). || O Text Fixed value [2

IMPORTANT! Make sure the name of || O Image o ® Hide At value

your dynamic pages set is sufficiently ||@® Symbol Hiding O Show N
different than any of the other pages in
your project or the converter can run in to difficulties creating the dynamic links.

The converter will look for all pages that might be targetable in your project folder and include them. If the
used POINT has a value for which there is no page available, a standard white error page with “Invalid file:
M24_pagename.bin” message will be displayed. Upon closing that error page, the whole project will be
reloaded and the user thus redirected to the first page of the project. It is therefore VERY IMPORTANT you
don’t make the points used for dynamic linking freely changeable, and you are very careful in programming
your external Modbus master to only write values for which there are pages into the displaypoint you are
using for the dynamic links. Having display native error messages pop up is obviously not advisable for end-
user applications. This function is only available during slave mode operation.

Writing “::xx” after the page name in the link field (e.g. Startpage.htm::120) will trigger a timer upon the loading
of the page after which the link is followed automatically. “xx” is the number of seconds to wait before changing
the page.

Fidelix FX-RP multiDISPLAY Programming manual page 25 of 41

If “#PASSWD:xx” is suffixed to the pointID from which the link is called (whether this be an actual display
point or just “LINK”), a popup is shown before the link is followed. The password can be a value between 1
and 65535, but is a fixed value, and can only be changed in the graphics editor, before conversion. Entering
a wrong password will keep the “Enter Password” dialog box open with a message: “Incorrect Password!”,
upon which the user can try again. To close the dialog box, press the “C” button.

Writing “#MODBUS:xx” after the page —

name in the link field allows following _Fﬂmt id |L|NK

that link by setting Modbus register || - Button _

3044 or 3046 from the Modbus master. | — —— File batch | Symbols |

xx is the value used for the _f::z' Numberfield |dot-black-0-640.gif

corresponding link, each link should () Bar display Mk"a"ﬂ i EMODBUS 13

have a separate value. e ' :

For example, the link field can contain | — ~— Fixed value
“alarm.htm#MODBUS:13”, which () |mage o
means that the alarm.htm page will be . Symbcﬁl """""""" [l Hiding

opened if “13” is written to “open page
register” 3044 or 3046.

This feature is used to “force” pages to appear. The links will most likely be hidden from the user, by putting
them in a small “invisible” box in a corner of the screen (10px X 10px in the background colour) or by putting
them on a (password protected) “settings page” in your project, and are thus only activated from the Modbus
master side when user action is required. The pages can be “force shown” at any given time, meaning the
user doesn’t have to be on the page containing the link for the linked page to “pop up” when instructed so by
the Modbus master. This function is only available during slave mode operation.

If “#HISTORY" is suffixed to the pointID from which the link is called (in mn Baec | ma Ba et 5]
this case, the linked must be called from one of the 250 points), the [#>->"
history graph window is opened when the link is clicked, and the latest D ”
values (history, trend) is requested from the Modbus master. The WM}
history functionality is explained later in this document. ‘H | M “*"ﬂ
This function is only available during slave mode operation. T Ab; , Ml \
Y (LA, e
Rk
G 07:35 25.06.2015 01:11 26.06.2015

If “#LUT" is suffixed to the pointID from which the link is called (in this |~ " . (e] e
case, the linked must be called from one of the 250 points), a graphical 10 ° o o

conversion table (look-up table) is opened and data is requested from
the Modbus master device. The Modbus master has to send the

conversion table data for the requested point. The look-up table s i ‘;/
functionality is explained later in this document. 4 '/"“i
This function is only available during slave mode operation. -

_Outdoor temper

Fidelix FX-RP multiDISPLAY Programming manual page 26 of 41

Strings / texts

It is possible to define a text object that loads a string from certain registers by selecting the “Show Point Value”
selection box and entering “STRING” as a text. String selection is done by changing the object value. The
object’s value can be preselected using format “STRING_XXYY” where XX is the string section number and YY
is the selected string. See the section “String Variables” later in this document for more details.

Entrance control user panel

If “PIN” is specified in the link field of the object, PIN-Code entering dialog will be opened. This function is useable
only if DU-10 mode is activated (RFID reader mounted).

The FX-RP multiDISPLAY can be equipped with a RFID reader which activates DU-10 mode. If DU-10 mode is
activated the DISPLAY will communicate also as a DU-10 device using next Modbus address (If MULTI
DISPLAY has address 10, DU-10 will have address 11). If DU-10 mode is activated the FX-RP multiDISPLAY
can be used as an intruder alarm user panel.

Customising keypad buttons

Keypad buttons can be customised to make them match the project design. Custom buttons have to be exactly
65x35 pixels, except the OK button which has to be 135x35 pixels. Buttons should be saved as .png files and
located in a subfolder called “Buttons” in your project folder. The converter will add the custom buttons
automatically if files are found from Buttons folder. The file names indicate the function of the button and the
following names should be used:

FdxButton0.png
FdxButton1.png
FdxButton2.png
FdxButton3.png
FdxButton4.png
FdxButton5.png
FdxButton6.png
FdxButton7.png
FdxButton8.png
FdxButton9.png
FdxButtonBackSpace.png
FdxButtonPlusMinus.png
FdxButtonCancel.png
FdxButtonDot.png
FdxButtonOk.png

The multiDISPLAY demo projects folder contains an example project folder named “Keypad example” that will
help you on your way.

Extended UTF-8-character support

The FX-RP multiDISPLAY supports UTF-8 characters, but only Latin characters are loaded by default. The
default character set includes following characters: “!\"#$ % '()*+,-./0123456789:;<=>?@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\\]*_"abcdefghljklmnopqgrstuvwxyz{|}
~a46&A O A°”. If you need characters that are not included by default you can define a custom character set
by adding a “CharacterSet.txt” file to you project folder. Type all the required characters to CharacterSet.txt file,
including also the default characters if those are needed (save the file using UTF-8 format). Note that every
character takes some memory, so it is not recommended to define more characters than you need.

The multiDISPLAY demo projects folder contains an example project folder named “multi language example”
inside which the Chinese, Finnish and Russian project folders each contain an example file that will help you on
your way.

Fidelix FX-RP multiDISPLAY Programming manual page 27 of 41

Modbus master functionality

PointID’s in the Graphics Editor

To use the FX-RP multiDISPLAY as a Modbus master, the correct pointID must be used in the graphics editor.
Point names starting with “MODBUS” are detected as Modbus master definition. The pointlD should also contain
fields for Modbus address, register number, Modbus device type and register format.

A pointID containing all needed information looks something like this:

‘MODBUS:ADD=1:REG=0:TYPE=INPUT:FORMAT=INT16".

field description options
ADD Modbus device |value between 1-247
address

REG Register number |value between 0-65535
(starting from 0)

TYPE Modbus device |INPUT read-only register
type HOLDING read-write register
SINGLEREG write single register
DISCRETE read-only Boolean
COIL read-write Boolean
FORMAT |Register format |INT16 signed single register
define§ how the |UINT16 unsigned single register
value is : INT32 signed dual register
presented in))
registers UINT32 unsigned dual register
REV_INT32 signed dual register with reversed register order
REV_UINT32 unsigned dual register with reversed register order
FLOAT IEEE 754 dual register single precision floating point
REV_FLOAT IEEE 754 dual register single precision floating point with
reversed register order
BITMASK;xxxx bitmask operation for register, bitmask is presented in

hex format and it can contain one or more bits set
Example: BITMASK;0020 means the 6™ bit

The ModbusMasterSettings.txt file

In addition to these settings some serial settings and other communication related settings are needed. Those
are defined in a text file named “ModbusMasterSettings.txt” which must reide in your project folder. That is the
same folder as where the htm pages are located. If the file is not found or the definitions file is invalid, default
settings are used (57600, 8N1, 50ms send delay, 100ms timeout, AUTO generated combined modbusdevices).
There are example projects with the correct syntax used for the Modbus master feature available in the Demo
projects folder. The settings in the file are explained in the following table. The term “modbusdevice” is used as
the name for a zone of registers towards which a communication socket is opened by the Modbus master display.

The minimum required lines to define the communication sockets are:

field Options (or example) |description

BAUD 9600 communication baud rate
19200
38400
57600
115200
BITS 8n1 data bits, parity and stop bits
8e1
801
8n2
8e2
802

Fidelix FX-RP multiDISPLAY Programming manual page 28 of 41

field Options (or example) |description

SENDDELAY numeric value Send delay before new request in milliseconds. The timer
is started when a reply has been received or when the
timeout timer has ran out.

MODBUSDEVICES AUTO Defines if modbusdevices are generated automatically or
MANUAL manually. If AUTO is selected, defined modbusdevices are
generated by the information given in point names.

Also modbusdevices needed to write registers defined by
SENDREGISTERS will be created. However, if the read
registers from a slave are not available on the Ul of the
master display, make sure you still manually add the
corresponding modbusdevice for those registers.
COMBINE FALSE Affects only if AUTO mode defined. Defines if Modbus

or numeric value registers should be combined as a one larger
modbusdevices containing multiple registers.

This can speed up the communication by reducing the
number of different Modbus messages.

Maximum number of registers to combine can be defined
here (< 100), or if FALSE then registers are not combined.
TIMEOUT numeric value Affects only if AUTO mode defined. Defines timeout for
auto generated modbusdevices. Same timeout is used for
every device. Makes sure not to select a value that is too
small, especially during development!

Furthermore, per communication socket, the “Modbusdevice” definition is needed. This to tell the multiDISPLAY
what communication socket to open to the connected slave(s).

In addition to that, a “SendRegister” definition can tell the multiDISPLAY where to read and send a value. This
can be an internal display register value, or a register of a connected slave. Make sure to define the
communication socket for reading, using the “ModbusDevice” definition; only the registers defined using the
“WRITEREG” parameter are defined automatically.

field Options (or example) |description
MODBUSDEVICE ADDRESS:1, Affects only if MANUAL mode defined.

STARTREG:O, Modbusdevices are defined by using the same format as

COUNT:1, for point names. Multiple modbusdevices can be defined.

TYPE:COIL, :

TIMEOUT:180 Algg needed for reading valugs from one slave and
writing them to a second, while the read values are not
shown on the multiDISPLAY. In this case, it can be used
in combination with MODBUSDEVICES=AUTO.

MODBUSDEVICE ADDRESS:10, Affects only if MANUAL mode defined. Use this to make

READREG:33, a field that shows the value of register 33, but that writes

WRITEREG:4, to register 4. The slave will most likely handle the writing

COUNT:1, of the value you write into register 4 into register 33.

TYPE:HOLDING, Don’t forget to manually create the modbusdevice for

TIMEOUT:250 register 4, as this will only generate the device for
register 33.

SENDREGISTERS ADDRESS:1, Send a fixed value to a certain register on a slave device

WRITEREG:9057, (for instance for a “communication is active” bit detection

FIXEDVALUE:1, that will be set to 0 again by the slave).

COUNT: A1, COUNT as a number uses Modbus code 16,

TIMEOUT:500 COUNT:SINGLE uses Modbus code 06.

SENDREGISTERS ADDRESS:10, Send a fixed value to a certain register on a slave

WRITEREG:11, device, based on the value of an internal time schedule

COUNT:1, on the display.

FIXEDVALUE:45,

TIMEOUT:220,

SENDIF:TIMESCH1=12

Fidelix FX-RP multiDISPLAY Programming manual page 29 of 41

field Options (or example) [description

SENDREGISTERS ADDRESS:8, Send the display’s internal registers to a slave.
\évgllJLECREERGéggbw The example here will send the status of the five internal
COUNT:5 ’ time schedules to registers 125-129 of slave at address

’ 8

TIMEOUT:300

SENDREGISTERS ADDRESS4, Send the register value from one slave to another
WRITEREG:6, register on another slave. Don’t forget to define the slave
SOURCEREG: address that is being read as MODBUSDEVICE, if it is
12.2458. HOLDING, not visible on the display’s interface, even when
COUNT:1, MODBUSDEVICES = AUTO is selected!
TIMEOUT:300 Target registers are always Holding registers.

SENDREGISTERS ADDRESS:0, When the address to send to is zero, the slave register is
WRITEREG:3019, copied into the display’s own registers.
SOURCEREG:15.28, This can be used for instance for triggering a sound
COUNT:1, alarm based on a slave register’s value.
TIMEOUT:85

Available memory for communication socket definitions

The number of Modbusdevices is not a fixed limit as such, but there is limited amount of memory reserved for
the definition of Modbus communication sockets. The available memory for defining communication sockets
(Modbusdevices) is 10240 bytes (4644 for V1 displays). Each Modbusdevice can have 99 registers maximum.
Each separate Modbusdevice takes up 40 bytes of memory + 2 bytes per register in its definition.

So; a Modbusdevice that consists of 15 registers will use 70 bytes. Similarly, when defining Modbusdevices per
1 register, they will each use 42 bytes, making the maximum number of Modbusdevices you can define 243 (or
110 for V1 displays).

It thus depends on the setup how many registers or register ranges (Modbusdevices) you can read out on one
FX-RP multiDISPLAY. If, while using the “MODBUSDEVICES=AUTO” setting, the available memory is
insufficient, you can try to define the devices manually.

Additional remarks

The easiest way to make sure you have defined everything correctly, is by opening the internal communication
report of the multiDISPLAY by placing a “LINK” element, pointing to “MODBUS” (see “links” section earlier in
this document).

NOTE: Copying registers from 1 slave to another always requires 2 independent Modbusdevices; 1 register
section that is being read and 1 register section that is being written. This needs to be considered when
calculating the available memory for Modbusdevices.

NOTE: The converter doesn’t do any checking of the number of Modbus communication sockets defined, so
make sure that, when using a lot of Modbusdevices, you calculate the actual memory used.

The multiDISPLAY demo projects folder contains an example project folder named “Modbus master example”
which will help you on your way. Also, the folders “text editing example”, “basic example” and “time editing
example” contain example files for the master functionality.

ModbusMasterSettings.txt example

An example of each of the features available in the “ModbusMasterSettings.ixt” file and the correct syntax of
how to use them:

Fidelix FX-RP multiDISPLAY Programming manual page 30 of 41

This is an example file to be used as reference to create your own custom file
Note that comment lines start with "::"
Comments are always a full line; comments behind parameters render this file invalid

== Set Modbus master baud rate
BAUD=9600
BAUD=19200
:: BAUD=38400
BAUD=57600
BAUD=115200

== Set bit count, parity and number of stop bits
BITS=8nl
:: BITS=8el

BITS=801

BITS=8n2

BITS=8e2

BITS=802

== Set Modbus send delay in milliseconds (a delay before next Modbus message is sent)
== The delay timer starts running after a reply has been received

:: == or the timeout timer has ran out

SENDDELAY=500

== Select if modbusdevices (communication sockets) should be made automatically or manually
MODBUSDEVICES=AUTO
MODBUSDEVICES=MANUAL

== If MODBUSDEVICES=MANUAL is selected, these settings do not have any effect
== If MODBUSDEVICES=AUTO is selected, then you can select if Modbusdevices should be
== combined making one larger Modbusdevice with multiple registers
== set to FALSE if combining is not allowed, or enter the maximum number of registers that should
== pbe combined per query
:: COMBINE=FALSE
COMBINE=10

== Set Modbus timeout in milliseconds (only for autogenerated Modbusdevices)
TIMEOUT=250

== If MODBUSDEVICES=MANUAL selected Modbusdevices have to be defined manually

MODBUSDEVICE=ADDRESS:5, STARTREG:O0, COUNT:1, TYPE:HOLDING, TIMEOUT:100
MODBUSDEVICE=ADDRESS:9, STARTREG:2, COUNT:10, TYPE:HOLDING, TIMEOUT:120
MODBUSDEVICE=ADDRESS:33, STARTREG:O0, COUNT:1, TYPE:INPUT, TIMEOUT:100
MODBUSDEVICE=ADDRESS:12, STARTREG:O0, COUNT:1, TYPE:DISCRETE, TIMEOUT:100
MODBUSDEVICE=ADDRESS:1, STARTREG:2, COUNT:1, TYPE:COIL, TIMEOUT:100

== Use this to make an element that shows the value of register 33, but writes into register 4
== this will generate a Modbusdevice for register 33,

== so don't forget to make sure you then have the "write" register also defined as Modbusdevice
MODBUSDEVICE=ADDRESS:10, READREG:33, WRITEREG:4, COUNT:1, TYPE:HOLDING, TIMEOUT:100
MODBUSDEVICE=ADDRESS:10, STARTREG:4, COUNT:1, TYPE:HOLDING, TIMEOUT:120

== Send a fixed value to a slave register
SENDREGISTERS=ADDRESS:10, WRITEREG:29, COUNT:1, FIXEDVALUE:1, TIMEOUT:100,
SENDREGISTERS=ADDRESS:1, WRITEREG:6, COUNT:SINGLE, FIXEDVALUE:2048, TIMEOUT:200

== Send a fixed value to a slave register,

== based on the value of an internal time schedule of the master display
SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:3, TIMEOUT:100, SENDIF:TIMESCH1=0
SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:6, TIMEOUT:100, SENDIF:TIMESCH1=1
SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:9, TIMEOUT:100, SENDIF:TIMESCH1=2

SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:45, TIMEOUT:100, SENDIF:TIMESCH1=14
SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:48, TIMEOUT:100, SENDIF:TIMESCH1=15

Fidelix FX-RP multiDISPLAY Programming manual page 31 of 41

== Send internal registers (such as time schedules, temperature, ..) to slave(s)

== local TE

SENDREGISTERS=ADDRESS:10, WRITEREG:1002, COUNT:1, SOURCEREG:3000, TIMEOUT:150
SENDREGISTERS=ADDRESS:10, WRITEREG:2, COUNT:1, SOURCEREG:3001, TIMEOUT:300
SENDREGISTERS=ADDRESS:10, WRITEREG:5, COUNT:1, SOURCEREG:3002, TIMEOUT:300
SENDREGISTERS=ADDRESS:10, WRITEREG:S8, COUNT:1, SOURCEREG:3003, TIMEOUT:300
SENDREGISTERS=ADDRESS:11, WRITEREG:2000, COUNT:1, SOURCEREG:3004, TIMEOUT:300
SENDREGISTERS=ADDRESS:29, WRITEREG:456, COUNT:5, SOURCEREG:3007, TIMEOUT:300
== local minute (0-59)

SENDREGISTERS=ADDRESS:12, WRITEREG:1044, COUNT:1, SOURCEREG:3005, TIMEOUT:300
== local Time Schedule 1 value

SENDREGISTERS=ADDRESS:13, WRITEREG:1044, COUNT:1, SOURCEREG:3007, TIMEOUT:300
== local Time Schedule 2 value

SENDREGISTERS=ADDRESS:10, WRITEREG:1008, COUNT:1, SOURCEREG:3008, TIMEOUT:150
using “COUNT:SINGLE” will use Modbus function code 06 instead of 16 for writing to the slave
SENDREGISTERS=ADDRESS: 2, WRITEREG:12, COUNT:SINGLE, SOURCEREG:3000, TIMEOUT:200

== Send the value of a register from one slave to another.

== Remember to add the read-registers to the Modbusdevice list

== (even when you are using the MODBUSDEVICES=AUTO setting)

== i1if you don't have those registers visible on the display.

== Only the write-registers are automatically created as Modbusdevice.

== When using the MODBUSDEVICES=MANUAL parameter,

== remember to create both the read and write registers as Modbusdevices.
== writing can only be done into Holding registers.

== If no type is specified, Holding register is assumed.

SENDREGISTERS=ADDRESS:20, WRITEREG:17, COUNT:1, SOURCEREG:1.2.COIL, TIMEOUT:250
SENDREGISTERS=ADDRESS:20, WRITEREG:480, COUNT:7, SOURCEREG:3.20480.HOLDING, TIMEOUT:250
SENDREGISTERS=ADDRESS:10, WRITEREG:1017, COUNT:1, SOURCEREG:11.1017, TIMEOUT:150
SENDREGISTERS=ADDRESS:10, WRITEREG:1020, COUNT:1, SOURCEREG:11.1020.DISCRETE, TIMEOUT:150
SENDREGISTERS=ADDRESS:10, WRITEREG:1023, COUNT:1, SOURCEREG:11.1023.INPUT, TIMEOUT:150
SENDREGISTERS=ADDRESS:11, WRITEREG:2, COUNT:SINGLE, SOURCEREG:2.0, TIMEOUT:200

== Set the value of a slave register to a local multiDISPLAY register.

== This can be used to trigger an alarm sound based on a slave register’s value,
SENDREGISTERS=ADDRESS:0, WRITEREG:3060, COUNT:2, SOURCEREG:1.2.COIL, TIMEOUT:125
SENDREGISTERS=ADDRESS:0, WRITEREG:3029, COUNT:SINGLE, SOURCEREG:3.9547, TIMEOUT:130

Note that the FX-RP multiDISPLAY -obviously- cannot operate as a Modbus master and slave at the same time.
However, a display acting as a Modbus master can be changed to be a Modbus slave by inserting a uSD-Card
containing a slave project and rebooting the display (= taking power off).

Alarm sounds based on slave register values

When operating as a Modbus master, the FX-RP multiDISPLAY can be used to play alarm sounds based on the
value of a register of one of the connected slaves. This can be any type of register. A “SENDREGISTERS”
declaration needs to be made in the ModbusMasterSettings file using “ADDRESS:0".

Selecting and triggering the sound directly from the slave’s register value

Copy the value from a holding or input register to local register 3060 (soft sound) or 3061 (loud sound) (for
details about the available sounds, see the “Display Parameters” section later in this document) by using the
SENDREGISTERS=ADDRESS:0, WRITEREG:3061, COUNT:1, SOURCEREG:1.2, TIMEOUT:125 declaration
in the ModbusMasterSettings file.

Selecting the sound from the multiDISPLAY’s local registers

As described in the “Display Parameters” section later in this document, local registers 3029+3030+3031 can
be used to set up an (alarm) sound triggering:

- Set local register 3031 to a value from 1..12 to determine the tune.

- Set local register 3030 to the value the Modbus slave will have when in alarm mode.

- Copy the Modbus slave register to local register 3029 by wusing a declaration like
SENDREGISTERS=ADDRESS:0, WRITEREG:3029, COUNT:SINGLE, SOURCEREG:15.3, TIMEOUT:150
in the ModbusMasterSettings file.

Fidelix FX-RP multiDISPLAY Programming manual page 32 of 41

The sounds triggered from these registers take preference over the sounds triggered by registers 3060/3061.
Even the muting with register 3028 (described below) will mute any sound triggered from registers 3060/3061.
Mute the display sound triggered by local registers 3029+3030+3031

When the sound is triggered by local register 3029+3030+3031 (described just above), setting register 3028 to
“1” will mute that sound specified in register 3031.

Use for instance “REG3028#MOMENTARY:600” in the PointID field with fixed value “0 1” on a button to mute
the triggered alarm sound for 10 minutes.

This mute takes preference over any sound triggered via registers 3060/3061.

Complete Display register structure overview
All internal registers used by the FX-RP multiDISPLAY are Holding registers.

Register sections

start end function

0 749 Input data

1000 1749 Output data

2000 2309 Trend

2310 2373 Graphical look-up table editor
2400 2911 String data

3000 3063 Special functions

65278 65343 Data download

Input data (input from an external Modbus master)
The external Modbus Master writes to these slave display registers:

POINT1 Reg00 Parameters, Divider, Unit
Reg01 Value (16 highest bits)
Reg02 Value (16 lowest bits)
POINT2 Reg03
Reg04
Reg05
POINT3 Reg06
Reg07
Reg08
POINT250 | Reg747 Parameters, Divider, Unit
Reg748 Value (16 highest bits)
Reg749 Value (16 lowest bits)

The “Parameters, Divider, Unit” register is divided into two:

Parameters & Divider (most significant byte of the “Parameters, Divider, Unit” register), and Unit (least significant
byte of the “Parameters, Divider, Unit” register).

For the Parameters & Divider part, these are the meaning of bits from most significant to least significant:

8: reset manual override
7 do not show value set from display
6: reserved
5: reserved
4-1; divider for the value (# of decimals)
0000 1(0)
0001 10 (1)
0010 100 (2)
0011 1000 (3)

Fidelix FX-RP multiDISPLAY Programming manual page 33 of 41

The unit part contains the chosen value as follows:

0 no unit 15 | K 30 | ohm 45 | g/kg
1 °C 16 |s 31 [N 46 | °F

2 Pa 17 | min 32 | kg 47 | CFM
3 bar 18 | h 33 | ms 48 | GPM
4 V 19 | Hz 34 | hPa 49 | %LIE
5 I/s 20 | W 35 | W/im? 50 | %LEL
6 m3/h 21 | kW 36 | mm 51 | %vol
7 % 22 | MW 37 | cm 52 | m¥/s
8 m3 23 | Lx 38 | km 53 | rpm
9 I 24 | km/h 39 | m 54 | m/s
10 | mA 25 |° 40 | €

11 | Wh 26 | °Is 41 | €/kWh

12 | kWh 27 |l/h 42 | CFM

13 | MWh 28 | 1/100km 43 | GPM

14 | ppm 29 | %Rh 44 | g/m?

The “Parameters, Divider, Unit” register contains 0xOF99 (3993) if the register is not set by the Modbus master.

Output data (output read by an external Modbus master)
The external Modbus master reads from these slave display registers:

POINT1 Reg1000 Info
Reg1001 Value (16 highest bits)
Reg1002 Value (16 lowest bits)
POINT2 Reg1003
Reg1004
Reg1005
POINT3 Reg1006
Reg1007
Reg1008
POINT250 | Reg1747 Info
Reg1748 Value (16 highest bits)
Reg1749 Value (16 lowest bits)

The “Info” register contains 0 if the value is not set from the display and 1 if the value set from the display.
The FX-RP multiDISPLAY resets this back to 0 if the value is equal in both input and output register sections.
This register also works as a “lock” to the point value registers, meaning that as long as the info register contains
“1”, the local value will be shown, and the value the Modbus master may be writing into registers 1+2, 4+5, ...
is ignored, unless of course you are setting the seventh bit of the “Parameters, Divider, Unit” register.

How to work with input/output registers
Each display point (POINT1, POINTZ2, ..., POINT250) has 6 registers attributed to it (3 input and 3 output).

When making graphics, you can assign a unit and a divider (the number of decimals) to each point. You can
also set these attributes from your master, if that is desirable, into register 0, 3, ..., 747. This feature is currently
no longer frequently used. Its original purpose (during development there were only 50 display points) was to
set the point type dynamically; having only 1 page, "looping through" different values. Currently that register is
set at OF99x16 (3993) if it has not been written over by the Modbus master.

Each point has an "info" register (1000, 1003, ..., 1747) which indicates if the point’s value has been set from
the display (=1). This is useful when you allow a user to enter a value (you ticked the “controller set value” box
in the EditPoint dialog box in the graphics editor) and you have not defined #MIN and/or #MAX on the graphics,
but want to validate the input, or simply monitor this register to detect changes in setpoints. In this case you can

Fidelix FX-RP multiDISPLAY Programming manual page 34 of 41

use the "Parameters, Divider, Unit" registers (0, 3, ..., 747) to initially hide the user input value, validate it in your
master and only then write it to the display (bits 7 and 8 of the most significant byte, see Input Data).

A value set from the display will be saved into registers 1001+1002, 1004+1005, ..., 1748+1749. At the same
time, it will set register 1000, 1003, ..., 1747 to "1", indicating a point's value has been changed locally. If the
master reads these values, it can “confirm” them by writing the same value into registers 1+2, 4+5, ..., 748+749.
Once that has been done, the display will set the info register (1000, 1003, ..., 1747) back to 0, again notifying
the Modbus master that all points and values have been properly synchronized.

A 4-and-a-half-minute video is available on Youtube to clarify this process: https://youtu.be/tEushV8ugsA

This rather complex process is however not always necessary. Actually, in most cases, we don't use it when not
working with the Fidelix multi24 controller (where all of these functionalities are embedded into two functions
GetDisplayPointF and SetDisplayPointF). Using a third party controller, the easiest way is to just write directly
into registers 1001+1002, 1004+1005, ..., 1748+1749, overwriting any value from the display when the point
value is editable from both the multiDISPLAY and the Modbus master.

IN SHORT: In most cases, you will have a very distinct separation between the points you want to read and the
ones you want to write and only select “controller set value” for those points you will set from the multiDISPLAY.
Read those from registers 1001+1002, 1004+1005 etc and write “read only” values on the multiDISPLAY that
are being written by the Modbus master into registers 1+2, 4+5 etc.

Trends (history)

The FX-RP multiDISPLAY can show trends with up to 300 points. The data is requested by the FX-RP
multiDISPLAY from the Modbus master. The data is presented as 16bit signed integers, the divider is taken from
the point definition. Instead of polling registers 2000 and 2001, the Modbus master may poll register 3012 which
also contains information about requested trend.

Reg2000 0=Trend ready (cleared by Modbus master), 1=Trend request (set by display)
Reg2001 Point number of requested point

Reg2002 Minimum value (used for y-axis scaling)

Reg2003 Maximum value (used for y-axis scaling)

Reg2004 Sample interval (seconds, used for x-axis scaling)
Reg2005 Number of points (max 300)

Reg2006 Last unsaved measurement

Reg2007 seconds from last unsaved measurement (0=not used)
Reg2008 Update interval (seconds, 0=not in use)

Reg2009 reserved

Reg2010 Trend data start (300 registers)

Reg2011

Reg2309 Trend data end

Graphical look-up table editor

The FX-RP multiDISPLAY can handle graphical look-up table editing with up to 10 points. The actual look-up
table must be implemented inside the Modbus master. Use the #LUT definition as a part of point name in the
graphics editor to use the look-up table function. The LUT operation is started by the FX-RP multiDISPLAY if a
point with #LUT definition is clicked. The FX-RP multiDISPLAY writes the point number of the requested LUT to
register 2310. The Modbus master needs to poll register 2310 to notice the LUT request. After the request, the
Modbus master should write the correct data to registers 2311-2339 and set register 2310 to “OxAAAA” indicating
that the data is uploaded to the FX-RP multiDISPLAY. After the user has finished the modification of the LUT
points, the FX-RP multiDISPLAY saves the (new) values to registers 2320-2339 and register 2310 is set to value
“OxBB00 + point number” indicating to the Modbus master that the process has finished. The Modbus master
can then read out the registers again to update the actual lookup table which resides inside the Modbus master

Fidelix FX-RP multiDISPLAY Programming manual page 35 of 41

https://youtu.be/tEushV8ugsA

Reg2310

Status register

Reg2311 Minimum value of X-axis

Reg2312 Maximum value of X-axis

Reg2313 Minimum value of Y-axis

Reg2314 Maximum value of Y-axis

Reg2315 Divider. The most significant byte contains the divider to be used for the Y-axis.
The least significant byte contains the divider to be used for the X-axis. If zero is used in
the most significant byte (or firmware < 3.01), the divider in the least significant byte is
used for both axes.

Reg2316 Point count (1..10)

Reg2317 Hairline (0=do not draw, 1=draw)

Reg2318 Adjust buttons (0=no buttons, 1=upper left corner, 2=upper right corner, 3=lower left
corner, 4=lower right corner)

Reg2319 reserved

Reg2320 X value of point 1

Reg2329 X value of point 10

Reg2330 Y value of point 1

Reg2339 Y value of Point 10

Reg2340 X-axis label text (Ascii) first register

Reg2349 X-axis label text (Ascii) last register

Reg2350 Y-axis label text (Ascii) first register

Reg2359 Y-axis label text (Ascii) last register

Reg2360 Title text (Ascii) first register

Reg2369 Title text (Ascii) last register

String Variables

The string section (registers 2400-2911) is divided into 8 blocks with 64 registers in each block (blocks 0 to 7;
block 0O: registers 2400-2463, block 1: registers 2464-2527, block 2: registers 2528-2591, block 3: registers 2592-
2655, block 4: registers 2556-2719, block 5: registers 2720-2783, block 6: registers 2784-2847, block 7: registers
2848-2911). Each block may contain one or more strings. The first register of each block contains the count of
strings in that block. The following X registers contain the start register and length of the corresponding string
where X = the number of strings in that block. As an example the register section containing strings "Hello,",

"Fidelix" and "rules!" should be configured as follows:

Register HEX value Decimal value

2400 0x0003 3 number of strings = 3

2401 0x0406 1030 Start register of first sting =4, length = 6 bytes
2402 0x0707 1799 Start register of second string = 7, length = 7 bytes
2403 0x0B06 2822 Start register of third string = 11, length = 6 bytes
2404 0x4865 18533 ‘H ‘e’

2405 0x6C6C 27756 I I

2406 0x6F2C 28460 ‘0’ ‘

2407 0x4669 18025 ‘F i

2408 0x6465 25701 d’ ‘e’

2409 0x6C69 27753 I i

2410 0x7800 30720 X’

2411 0x7275 29301 r ‘u’

2412 0x6C65 27749 I ‘e’

2413 0x7321 29473 ‘s’ ‘r

Fidelix FX-RP multiDISPLAY

Programming manual

page 36 of 41

If you choose to have strings of 20 characters, this means you need 10 registers per string + 1 register per string
for the string description (=11 registers per string). This means you can have 5 strings per text block (=55
registers), or 40 strings of each 20 characters in total on the display. Of course each string can have its own
length and you can choose to have as many and as long (or short) strings as is needed.

Addressing strings on the slave display is done by using pointID: STRING and writing in the “Text” attribute:
STRING_XXYY (four decimal characters), in which XX is the block number from 00 to 07, and YY is the number
of the string inside that block. "Show point Value" should be selected. In the example above, the string “rules!”
is referenced like this: “STRING_0003". It is also possible to reference strings by point value. The point name
should be as normal (POINTxx) and you should write "STRING" in the text field. "Show point Value" must be
selected. By then setting the point’s value to 103, you reference block 1 string 3.

The excel tool “multiDISPLAY register value and character cheat sheet.xIsx” which you can find on our partner
download page, can be used to easily find the right values for the characters you need.

Display parameters

The sample IEC-code for use with Info Team’s program “OpenPCS” generated by the converter will handle
some of these special purpose registers in the end of the file “Displaylnterface.st”. Modify that file if you need
more functions to be used in the program you run on your multi-24 module. If the FX-RP multiDISPLAY is
connected directly to an FX controller, these registers should be handled by using Modbus devices.

Reg# |Function R/W |Notes

3000 |Internal Temperature Measurementin °C |R Multiplied by 10, for example 255 = 25.5°C

3001 | Current Day R Current Day (1-31)

3002 | Current Month R Current Month (1-12)

3003 |Current Year R Current Year (e.g. 2018)

3004 | Current Hour R Current Hour (0-23)

3005 | Current Minute R Current Minute (0-59)

3006 |Tamper Status R 0=0K, 1023=Tamper detected (read-only copy of
register 3062)

3007 |Time Schedule 1 Status R Possible values from 0..15

3008 | Time Schedule 2 Status R Possible values from 0..15

3009 |Time Schedule 3 Status R Possible values from 0..15

3010 |Time Schedule 4 Status R Possible values from 0..15

3011 | Time Schedule 5 Status R Possible values from 0..15

3012 |History request R 0=No request, 1-250=point number for which
history is requested

3013 | Project folder R Last character of the currently active project

folder name. Used to detect which project is
loaded
3014 | Internal Temperature Measurement °F Multiplied by 100, so 6883->68.83°F

3015 |Internal Temperature Measurement °C Multiplied by 100, so 2555->25.55°C

3016 | Proof of “user action” R/W | Master can write 0 to this register once all
registers have been read. Contains the first
changed point number after “0” reset. Used for
monitoring only one register to see when and if
user has changed anything on the display.

Py

X

3017 | Current day of the week R 0=Sat, 1=Sun, 2=Mon, ..., 6=Fri
3018 |Firmware version R Multiplied by 100, for example 304 = version 3.04
3019 |Notin use R n/a

R n/a

Fidelix FX-RP multiDISPLAY Programming manual page 37 of 41

Reg# |Function R/W | Notes
R n/a

3027 |Notin use R n/a

3028 |Mute Alarm Sound R/W | Mute alarm sound triggered by registers
3029+3030+3031. 1=Muted.

E.g.: Use REG3028#MOMENTARY:600 with
fixed value “0 1”7 on a button to mute the triggered
alarm sound for 10 minutes.

3029 | Trigger Sound Variable R/W | When this register contains the same value as
register 3030, the sound in register 3031 is
triggered. (More: see earlier in this document).

3030 | Trigger Sound Value-To-Match R/W | The value that will trigger the sound specified in
register 3031 when register 3029 contains that
same value.

NOTE: This register is saved to the local
memory, and read from there at power-up.
Can be written to up to 100 000 times.

3031 | Trigger Sound Sound-To-Play R/W | Value from 1..12 determining what sound is
played (loudly) when registers 3029 and 3030
contain the same value.

See register 3061 for the list of available tunes.
NOTE: This register is saved to the local
memory, and read from there at power-up.
Can be written to up to 100 000 times.

3032 | Operating Mode Display Brightness R/W | 10%-100%, multiplied by 10

3033 | Standby Mode Display Brightness R/W | 0%-100%, multiplied by 10

3034 | Apply Brightness Settings R/W | If 1, apply values from registers 3032 and 3033

3035 |Set VCOML R/W |0-21, 0=VLCD63x0.60, 1=VLCD63x0.63, etc.

3036 |Set VCOMH R/W |0-63, 0=VLCD63x0.36, 1=VLCD63x0.37, etc.

3037 |Set VLCD63 R/W |0-15, 0=VREFx1.780, 1=VREFx1.850, etc.

3038 | Set Frequency R/W |0-6, 0=50Hz, 1=55Hz, etc...

3039 |Apply Display Settings R/W | If 1, apply values from registers 3035 — 3038.
These registers contain values to change internal
voltage levels, affecting the viewing angle and
other viewing related settings.

Typically, the standard settings are tested and
optimal. Change them on your own responsibility.

3040 |Enable Click Sound R/W | 0=disabled, 1=enabled, 2=user selectable

3041 |Enable Finger Mode R/W | O=disabled, 1=enabled, 2=user selectable

3042 |Enable Upside Down Mode R/W | 0=disabled, 1=enabled, 2=user selectable

3043 | Settings Page Access through long press |R/W |0=enabled, 1=disabled, 2=partially enabled
(Modbus address disabled)

3044 | Open Page R/W | Open corresponding page if value found from link
list (cleared automatically). See “Links” section.

3045 |Language R/W | Set language of time schedule page
0=English, 1=Finnish

3046 |Open Page 2 R/W | Open corresponding page if value found from link
list (not cleared automatically). See “Links”
section.

3047 | Calibration Page R/W | 0=normal, 1=disabled (also the settings page will
be disabled), 2=skip calibration and jump directly
to settings

3048 | Calibration delay R/W | 0=normal (7 sec), all other values = seconds

3049 | Startup sound R/W | 0=normal (“Positive action” in Quiet mode

1 or higher=startup sound disabled

Fidelix FX-RP multiDISPLAY

Programming manual

page 38 of 41

Reg# |Function R/W | Notes
3050 |En-/Disable Daylight Saving Hour Change | R/'W | 0=enabled (default),
1=disabled (no automatic change from or to
daylight saving time.)
When disabled, visible (though not editable) on
the settings page.
3051 |Notin use R n/a
3052 | Disable temperature measurement R/W | 0=normal (= use compensation),
compensation 1=disable compensation (only use this when an
external temperature sensor is used; the
compensation accounts for the heating of the
PCB and the heat generated by the display
depending on its brightness)
3053 |Internal Temperature Measurement R/W | This value in °C is added to the internal
Adjustment temperature measurement value. (e.g. -23
means -2.3 °C)
3054 |New Day Value R/W | New Day Value (1-31)
3055 |New Month Value R/W | New Month Value (1-12)
3056 |New Year Value R/W | New Year Value
3057 | New Hour Value R/W | New Hour Value (0-23)
3058 |New Minute Value R/W | New Minute Value (0-59)
3059 | Apply Values from Registers 3054-3058 |R/W |Changing from 0 to 1 will apply new date and
time from registers 3054 — 3058
3060 |Play Quiet Sound R/W | Play a quiet sound (1-12=play tune, 13=stop
playing. Tunes listed at register 3061)
3061 |Play Loud Sound R/W | Play a loud sound. Possible sounds / tunes are:
1: Positive Action
2: Fur Elise
3: Turkey March
4: Minuet
5: Solveig’s song
6: Siren 1
7: Siren 2
8: Whistle
9: Tone Scale
10: Positive Beep
11: Negative Beep
12: Disaster Beep
13: Stop Playing
3062 | Tamper State R/W | 1023=Tamper detected. Master writes 0 to clear
3063 |Boot Loader Startup Register R/W | Used to start bootloader mode, do not change
this value
3064 Non-volat!le reg!ster RIW Registers for values that need to be saved upon
3065 | Non-volatile register R/W power supply interruption.
3066 |Non-volatile register R/W |NOTE: These values are written to the local
3067 |Non-volatile register R/W | memory, and read from there upon power-up.
3068 | Non-volatile register R/W | €an be written to up to 100 000 times.

Fidelix FX-RP multiDISPLAY

Programming manual

page 39 of 41

Change log

This section describes the changes made forward from firmware version 1.47, and converter version 1.16
released on 10 November 2014. Mentioned numbers are always firmware version number / converter version
number.

1.48 / 1.16: Calibration timeout defined in register 3048 changed to multiples of 1 second.

1.49 / 1.17: Converter now looks in the working folder for the presence of the “ModbusMasterSettings.txt” file.
When this is found, master communication is generated. Link to calibration page added.

1.54 / 1.21: Calibration requires two pushes to be far enough from each other, so erroneous clicks are no longer
validated. #MOMENTARY :x for slave added. “READREG:xx, WRITEREG:yy,” for master added. Added feature
to send fixed values from the display master depending on the internal time schedule status.

1.58 /1.23: Added “SINGLEREG?” for reading/writing single holding registers from the multiDISPLAY as Modbus
master

1.59 / 1.25: Register 3053 can now be set from the local display itself also.
1.60 / 1.27: Added dynamic links.

1.63: Added free graphical interface possibility for internal time schedules. Removed necessity to separate
Modbus master and slave projects in different folders. Changed order of loading point values and graphics to
remove delay in graphics update on page load.

1.66 / 1.32: Ability to read from one Modbus slave and write to another (passing values).
1.71 1 1.34: Some small bug fixes to previously added functionalities.

1.73 1 1.36: Register 3017 now contains the day of the week. Added direct link to display settings page. Added
visualisation of the current Modbus address. Added start-up sound disabling possibility. Added ability to write to
pNSD card when uploading graphics through Modbus.

1.75 1 1.37: Increased read timeout from uSD card. Added UINT to Modbus master register value formatting.
1.76 / 1.37: Small bug fix on the #BYTE values

1.78 1 1.38: Added math operators. Small bug fix on the summer- to wintertime clock change. Time changes at
04:00 to 03:00 for the change to wintertime, and at 03:00 to 04:00 for the change to summertime.

1.81 / 1.39: Added possibility to set unused days in time schedules to zero. Signed integers now used for
displaying internal registers. A few minor bug fixes concerning +/- buttons and constant / momentary values.

1.82 or 2.85/ 1.40: These two versions are now equivalent for displays from generation 1 and 2.

Following this point, “x.yy” will refer to: x=1 or 2, depending on the hardware version,
yy=the actual firmware version number. Both versions will continue to be compiled.

x.88 / 1.41: Improved Modbus master communication. Fix in V2 daylight saving time shift. Added new units.
x.89 / 1.41: Added support for Modbus communication at 4800 bps in slave mode.

x.90 / 1.43: Added #BITx. Changed visualisation of timeout value on Modbus master communication overview
page.

x.90 / 1.44: Length of file names is no longer taking up (valuable) memory space when the “uSD” has not been
ticked in the converter as the files are all being renamed. A few other converter memory space improvements.

x.91 / 1.44: Small fix; elements of 1 by 1 pixel no longer cause the display to restart itself

x.95 / 1.51: Minimum and maximum in the “Fixed value” field of symbols can now be other points (making a
setpoint value even more dynamic). Added #NOEDIT tag to bar display element. Internal display registers
(3000+) are now also editable with +/- buttons. Increased available memory for the definition of ModbusDevices
in Modbus master mode. Increased available memory for projects in V2 displays. File table is now dynamic;
when more than 2 kB are needed for the internal file allocation table, the converter will dynamically attribute
more memory to the file table. Added “LOCKPATH?” feature to make another project start up by default. Added
possibility to hide on #BIT or #BYTE value. Added #UNITSPACE PointID suffix.

x.96 / 1.51: Small fix; links to time schedules on settings page all pointed to time schedule 5 in version x.95.
x.96 / 1.52: Small fix; Chinese comma character (,) caused the converter to crash.
x.97 / 1.53: Added #BITGROUP feature to visualisation options (visualise 2..6 bits together as a group)

Fidelix FX-RP multiDISPLAY Programming manual page 40 of 41

x.98 / 1.54: Added possibility to disable daylight savings time (register 3050). Several small bug fixes.
x.99 / 1.55: Added FLOAT and REV_FLOAT visualisation to REGxxxx pointID

Following this point, “x.yy” will refer to: x=2 or 3, depending on the hardware version,
where 2.yy is suitable for hardware version 1, and 3.yy for hardware version 2.

x.00 / 1.56: Added SINGLE as an option to write to Modbus slaves (using function code 06). Several other bug
fixes, tweaks and improvements, notably on the MATH functionality. READREG / WRITEREG usage in the
Modbusmastersettings.txt file optimised.

x.00 / 1.57: 2020-03-18 - Bug fix on including the ampersand in the “CharacterSet.txt” file.
x.00 / 1.60: 2020-04-22 - Different fonts can now be selected for large and small texts in the converter.

x.02 / 1.60: 2020-06-25 - Transparency is now differently calculated, allowing for overlaying active elements.
Earlier versions used background image pixels; now transparent pixels are skipped.

Modbus master fixes: invalid data from slave could cause Modbus communication to freeze.

'Register to single register' and 'Fixed value to single register' functionality updated and small bug fix.

Added separate dividers for graphical lookup table X- and Y-axis values.

x.03 /1.60: 2021-02-01 - #MOMENTARY now also works when the display is Modbus master.

Added the ability to copy slave register values to local register values (Master mode).

Added registers for conditional sound control, this makes it possible to play sounds depending on Modbus slave
condition.

x.04 / 1.60: 2021-06-09 — Register 3018 now contains display firmware version.

Changes in transparency treatment of non-active elements. Added “x” to TIME4 display parameter to mix leading
and non-leading zeros in time and dates. Some tweaks on very small graphical elements (1 and 2 pixels wide
or high).

x.05/1.60: 2021-10-26 — More changes in transparency treatment. Fixed a bug that caused the display to get
stuck in firmware when uploading pages via Modbus would take too long. Affected chip: SMT32F405. Optimised
updating process via memory card.

x.06 / 1.60: 2022-03-30 — Even more changes in transparency treatment; images with transparency that are
placed on top of elements with no fixed coloured background, will display on top of these elements. Hiding now
also works on #BIT tags on elements with REGXXXX naming structure and non-volatile registers. Hiding will
now redraw the whole area of the element.

x.07 [1.60: 2022-05-12 — Modbus write message is now resent in Modbus master mode when no reply is
received from the slave within the defined timeout period.

x.08 / 1.60: 2023-11-29 — Small change to BITMASK feature in Master mode; previously it only returned “0” or
“1” as soon as one bit was ‘active’, now it shows the value of the whole bits-group.

x.09 / 1.60: 2024-03-07 — ModbusMaster functionality fix. Input Registers and Discrete Inputs stopped working
if an object with the corresponding register was clicked on the graphics. Clicking an object set the “DataChanged”
flag and any values read from the slave were discarded after that. The “DataChanged” flag was not cleared
because there was no write operations for read only values.

Fidelix FX-RP multiDISPLAY Programming manual page 41 of 41

	FX-RP multiDISPLAY programming manual
	Getting started with the FX-RP multiDISPLAY
	General overview
	Device properties
	Different versions
	Encasings
	Different chip versions

	Using the multiDISPLAY
	Startup
	Recalibrating the touch screen and changing settings

	Updating the firmware of the FX-RP multiDISPLAY
	Using the FX-RP multiDISPLAY with the Fidelix multi24 room controller module
	Demo projects

	Software
	Overview
	Installation
	Fidelix Graphics Editor
	What you should know before you edit pages
	The FXINDEX page
	Editing pages (a few pointers)

	HTML to Multi Display / Room Display Converter
	The program’s UI
	Converting HTML files to the DISPLAY format
	Windows zoom settings and the converter
	Troubleshooting the converter

	Getting projects on the multiDISPLAY
	Loading projects into the FX-RP multiDISPLAY’s internal memory
	With an FX-controller
	With a multi24 module and a PC
	With a µSD memory card

	Using graphics from a μSD-Card
	Minimising binary file size
	Multiple projects on one μSD-Card

	Uploading a project via Modbus

	Detailed programming
	Introduction
	Visualisation customisation
	IEEE-754 Floating Point format

	Increment, Decrease, Minimum & Maximum
	Math operators
	Status texts
	Time and date, temperature, firmware version and Modbus address
	Internal time schedules
	Links
	Strings / texts
	Entrance control user panel
	Customising keypad buttons
	Extended UTF-8-character support

	Modbus master functionality
	PointID’s in the Graphics Editor
	The ModbusMasterSettings.txt file
	Available memory for communication socket definitions
	Additional remarks
	ModbusMasterSettings.txt example
	Alarm sounds based on slave register values
	Selecting and triggering the sound directly from the slave’s register value
	Selecting the sound from the multiDISPLAY’s local registers
	Mute the display sound triggered by local registers 3029+3030+3031

	Complete Display register structure overview
	Register sections
	Input data (input from an external Modbus master)
	Output data (output read by an external Modbus master)
	How to work with input/output registers
	Trends (history)
	Graphical look-up table editor
	String Variables
	Display parameters

	Change log

