
Fidelix FX-RP multiDISPLAY  Programming manual  page 1 of 41  

 

 

 
 

FX-RP multiDISPLAY programming manual 

FX-RP multiDISPLAY programming manual ............................................................................................................................................................. 1 
Getting started with the FX-RP multiDISPLAY ..................................................................................................................................................... 2 

General overview .............................................................................................................................................................................................. 2 
Device properties .............................................................................................................................................................................................. 2 
Different versions .............................................................................................................................................................................................. 3 

Encasings ..................................................................................................................................................................................................... 3 
Different chip versions ................................................................................................................................................................................. 4 

Using the multiDISPLAY ................................................................................................................................................................................... 5 
Startup .......................................................................................................................................................................................................... 5 
Recalibrating the touch screen and changing settings ................................................................................................................................ 5 

Updating the firmware of the FX-RP multiDISPLAY ........................................................................................................................................ 6 
Using the FX-RP multiDISPLAY with the Fidelix multi24 room controller module ........................................................................................... 6 
Demo projects ................................................................................................................................................................................................... 6 

Software ................................................................................................................................................................................................................ 6 
Overview ........................................................................................................................................................................................................... 6 
Installation ......................................................................................................................................................................................................... 7 
Fidelix Graphics Editor ..................................................................................................................................................................................... 8 

What you should know before you edit pages ............................................................................................................................................. 8 
The FXINDEX page ..................................................................................................................................................................................... 9 
Editing pages (a few pointers) ................................................................................................................................................................... 10 

HTML to Multi Display / Room Display Converter .......................................................................................................................................... 11 
The program’s UI ....................................................................................................................................................................................... 11 
Converting HTML files to the DISPLAY format .......................................................................................................................................... 13 
Windows zoom settings and the converter ................................................................................................................................................ 13 
Troubleshooting the converter ................................................................................................................................................................... 14 

Getting projects on the multiDISPLAY ................................................................................................................................................................ 15 
Loading projects into the FX-RP multiDISPLAY’s internal memory ............................................................................................................... 15 

With an FX-controller ................................................................................................................................................................................. 15 
With a multi24 module and a PC ............................................................................................................................................................... 15 
With a µSD memory card ........................................................................................................................................................................... 15 

Using graphics from a μSD-Card ................................................................................................................................................................... 15 
Minimizing binary file size .......................................................................................................................................................................... 16 
Multiple projects on one μSD-Card ............................................................................................................................................................ 16 

Uploading a project via Modbus ..................................................................................................................................................................... 17 
Detailed programming ......................................................................................................................................................................................... 17 

Introduction ..................................................................................................................................................................................................... 17 
Visualisation customisation ............................................................................................................................................................................ 18 

IEEE-754 Floating Point format ................................................................................................................................................................. 21 
Increment, Decrease, Minimum & Maximum ................................................................................................................................................. 21 
Math operators................................................................................................................................................................................................ 21 
Status texts ..................................................................................................................................................................................................... 22 
Time and date, temperature, firmware version and Modbus address ............................................................................................................ 23 
Internal time schedules ................................................................................................................................................................................... 24 
Links ............................................................................................................................................................................................................... 25 
Strings / texts .................................................................................................................................................................................................. 27 
Entrance control user panel ............................................................................................................................................................................ 27 
Customising keypad buttons .......................................................................................................................................................................... 27 
Extended UTF-8-character support ................................................................................................................................................................ 27 

Modbus master functionality ............................................................................................................................................................................... 28 
PointID’s in the Graphics Editor ..................................................................................................................................................................... 28 
The ModbusMasterSettings.txt file ................................................................................................................................................................. 28 
Available memory for communication socket definitions................................................................................................................................ 30 
Additional remarks .......................................................................................................................................................................................... 30 
ModbusMasterSettings.txt example ............................................................................................................................................................... 30 
Alarm sounds based on slave register values ................................................................................................................................................ 32 

Selecting and triggering the sound directly from the slave’s register value .............................................................................................. 32 
Selecting the sound from the multiDISPLAY’s local registers ................................................................................................................... 32 
Mute the display sound triggered by local registers 3029+3030+3031 ..................................................................................................... 33 

Complete Display register structure overview ..................................................................................................................................................... 33 
Register sections ............................................................................................................................................................................................ 33 
Input data (input from an external Modbus master) ....................................................................................................................................... 33 
Output data (output read by an external Modbus master) ............................................................................................................................. 34 
How to work with input/output registers .......................................................................................................................................................... 34 
Trends (history)............................................................................................................................................................................................... 35 
Graphical look-up table editor ........................................................................................................................................................................ 35 
String Variables .............................................................................................................................................................................................. 36 
Display parameters ......................................................................................................................................................................................... 37 

Change log .......................................................................................................................................................................................................... 40 
 



Fidelix FX-RP multiDISPLAY  Programming manual  page 2 of 41  

Getting started with the FX-RP multiDISPLAY 
General overview 
The FX-RP multiDISPLAY’s interface is freely programmable. It consists of “pages” that are made using the 
Fidelix graphics editor. Links can be made between pages, and the user will navigate in a similar way through 
the pages. The graphics editor generates .htm pages that have to be converted using the “HTML to Multi Display 
/ Room Display Converter”, which generates binary files that are suitable for the FX-RP multiDISPLAY.  

Up to 768 kB of data (256 kB for generation 1 displays) can be stored into the internal memory of the FX-RP 
multiDISPLAY. This is sufficient for most projects, but when more capacity is needed (heavy graphics, lots of 
pages, …), a μSD card can be used. You can order high quality µSD cards from us, and we strongly advise you 
to use these µSD cards, as a (cheaper) µSD card breakdown will result in a freezing of the user interface, 
because new pages are always loaded from the µSD card when this is used (see Using graphics from a µSD 
card).  

The recommended wat of working remains however, to NOT use a memory card, but optimise your graphics to 
fit into the internal memory of the FX-RP multiDISPLAY (see Minimising binary file size). 

The most common way the display is used, is as Modbus slave, in which case it can hold 250 variables, that are 
called and referenced to as POINTS. 

Each user interface created for the FX-RP multiDISPLAY resides in its own folder. This folder will further be 
referenced to as the “project folder” in this manual. This folder needs to contain at least 1 .htm file, and a folder 
called “Symbols” with all symbols used in the project. When no symbols are used, the folder still needs to be 
present to be able to run the conversion from .htm files to binary files for the FX-RP multiDISPLAY. 

The communication between the FX-RP multiDISPLAY as a slave, and a master device uses the Modbus RTU 
protocol. The FX-RP multiDISPLAY has 250 predefined points (POINTxxx) that can be freely used. Each point 
has 6 registers containing its value, unit, divider etc. (see Input data and Output data) 
When working with other Fidelix devices, the programmer does not need to know about the Modbus registers; 
for the multi24, all necessary code is generated by the converter, and when working with an FX-controller, the 
first 50 points can be directly selected as the physical point of any DI, DI, AI, AO or alarm point. 
If you are not using a Fidelix controller as your Modbus master, the linking of the FX-RP multiDISPLAY points 
happens in the same way, only you’ll need to program your master to read and write the correct registers. The 
register structure used by the FX-RP multiDISPLAY is explained later in this document. 

Device properties 
Physical size 3.5” (+/- 9 cm) diameter (72 x 54 mm screen, 85 x 85mm encasing) 
Power supply 12-45 VDC or 16-32 VAC  (V1 = 12-26VDC or 16-26 VAC) 
Power consumption ≈1W at 100% / ≈0.5W at 40% display brightness 
Resolution 320x240 pixels 
Colours 16 bit depth 
Images All standard supported image types. No dynamic gifs 
Modbus communication Modbus RTU over RS485 bus (only using A/+ and B/– connectors) 
Modbus speed Slave: auto detect from 4 800 to 115 200 bps 

 

Master: freely configurable in ModbusMasterSettings.txt file (see Modbus Master 
functionality) from 9 600 to 115 200 bps 

Modbus settings Slave: The number of databits and stopbits is automatically detected from the bus.  
 

The parity is set by placing a file “serial.txt” in the project folder with this content: 
“Parity=Even”, “Parity=Odd” or “Parity=No”. 
When no file is present, the default of “No Parity” is assumed.  
 

Default settings (set when no bus communication is detected):  
8 Data bits, no parity, 1 stop bit. 
 

Master: freely configurable in ModbusMasterSettings.txt file (see Modbus Master 
functionality) 



Fidelix FX-RP multiDISPLAY  Programming manual  page 3 of 41  

Modbus port protection The maximum common-mode voltage on the bus is -7V/12V.  
The bus is protected against faults of minimum 70V 

Display “points” Slave: 250 points total, maximum 40 per page 
 

Master: 40 points / page, total depends on the distribution of the registers of the 
slave device(s) (see the explanation about ModbusDevices at the end of the 
Modbus Master functionality section) 

Available memory 768 kB (V1 = 256 kB) 

Different versions 
Encasings 

The FX-RP (Fidelix Room Panel) multiDISPLAY is available in two different encasings. Both encasings fit in a 
standard European pattress box (electrical socket or light switch size). Both have external dimensions of 
85x85mm. 

The FX-RP-A is straight: The FX-RP-B is +/- 7° tilted upwards: 

  

The FX-RP-C is without encasing: The FX-HP (Fidelix Hand Panel): 

 

 

 

                                                      

Though the PCB for the Room Panel and Hand Panel have a different shape, they have in fact the same 
hardware specifications and can thus be used with the exact same software. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 4 of 41  

Different chip versions 
Two different chips have been used for the FX-RP multiDISPLAY; deliveries before 2017 were made with chips 
with 256 kB (STM32F103), and deliveries from January 2017 onwards are made with chips with 768 kB of 
memory available for project pages and graphics (STM32F405). This difference is important when selecting the 
correct version of the firmware for your FX-RP multiDISPLAY. The “first generation” displays use a processor 
with product code STM32F103 and require firmware with version numbers 0.xx, 1.xx, or 2.xx. The second 
generation displays use a processor with product code STM32F405 and require firmware with version number 
2.xx or 3.xx. As this can be very confusing (some 2.xx for V1, some for V2), always check the change log at the 
end of this document to know which firmware version is compatible with which hardware version. 

You can also recognise the different generation displays by their different programming connector (the red plastic 
connector, used during production), capacitor (the part looking like a small button battery, holding time schedule 
settings and the clock for 10-50 hours), and tamper switch, or by the PCB version; 1.52 and upwards = 2nd 
generation multiDISPLAY. 

              

multiDISPLAY 1st generation multiDISPLAY 2nd generation 
PCB version < 1.52 PCB version >= 1.52 
Processor = STM32F103 Processor = STM32F405 
Power supply: 12-26 VDC / 16-26 VAC Power supply: 12-45 VDC / 16-32 VAC 
 

Changed components 
 different capacitor and holder (bottom right, next to the NTC10 sensor) 
 different programming connector for production (red plastic for V1) 
 different tamper switch (centre right) 

 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 5 of 41  

Using the multiDISPLAY 
 

Startup 
The FX-RP multiDISPLAY is started by connecting the power supply. 
When a project is detected, either on the internal memory or on the µSD 
card, this will be loaded into working memory and a message will be 
displayed. After a few seconds the “home” page of the project will be 
shown. 

 

 

Recalibrating the touch screen and changing settings 
By pressing the touch screen of the FX-RP multiDISPLAY for about 10 
seconds, the multiDISPLAY’s calibration is activated. Follow the on-
screen instructions and click each of the three blue crosses one by one 
with a pointy device. Fingers can also be used, but tend to get less 
precise results.  
Calibration can also be called from a link on the multiDISPLAY. 

 

After calibration, the settings screen is opened. Time, Date, Modbus 
address, display brightness and the five internal time schedules can be 
adjusted from this page. Also the firmware version is show here, and click-
sounds can be en-/disabled, the orientation of the display can be changed 
and the precision of the screen can be adjusted by selecting “finger 
mode”. 

NOTE: When changing time and date, it takes a few seconds to update 
the values shown on the settings page. This means that a changed 
parameter might jump back to its old value for a few seconds right after it 

is changed. It is thus best to wait a few seconds for the new value to be show on the settings page, and only 
then move on to the next parameters to avoid conflicting update-processes and parameters resetting to their old 
values. 

On the settings screen, the five internal time schedules can also be 
accesses and modified: 

Note that one can also create custom graphic pages for the internal 
time schedules (see the Internal Time Schedules section). 

 

 

It is possible to disable the settings page or certain parameters through a Modbus register. It is also possible to 
change settings through Modbus registers. Registers are explained in the “Display parameters” paragraph. 

Opening the settings page and starting the calibration can also be done by creating a link on your pages. See 
the “Links” section in this document. 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 6 of 41  

Updating the firmware of the FX-RP multiDISPLAY 
The firmware of the FX-RP multiDISPLAY can be updated using the module update feature (Programming  
Module versions) on an FX-controller. The firmware updating procedure is like uploading graphics to the internal 
memory of the FX-RP multiDISPLAY except that new firmware files should be copied to the \hdisk\fidelix\bin\hex 
folder instead of the \hdisk\fidelix\data folder. The firmware can also be uploaded to the FX-RP multiDISPLAYs 
connected to the sub-bus of a multi24 module. The file name for a pass-through updating should be for example 
PASSTH-12-MULTI-DISP.hex-0173, where 12 is the Modbus address of the FX-RP multiDISPLAY. 

The firmware can also be updated by the display itself. Copy the file “RDFW.BIN” you can download from our 
partner page to the root of the μSD-card. With power off, insert the μSD-card into the display. Power on the 
display. The “DIAG” LED on the back of the display will blink rapidly during the time the firmware is being 
updated, and the screen will light up but stay blank during the updating process. The file “RDFW.BIN” will be 
renamed to “RDFW_LOADED.BIN” to avoid reloading the firmware every time the display is powered on again. 
If there already is a file called “RDFW_LOADED.BIN”, the renaming of the original file will fail without error 
message. (This means the next time a display is powered on with that μSD-card inserted, that display will update 
the firmware, regardless of the fact that it might have done so on the previous boot.) 

You can purposely keep the “RDFW.BIN” file to update several displays consecutively, by naming the file 
“RDFWKEEP.BIN”. (Basically, this has the same effect as having both the “RDFW.BIN” and the 
“RDFW_LOADED.BIN” file on the μSD-card.) 

 

Using the FX-RP multiDISPLAY with the Fidelix multi24 room controller module 
The FX-RP multiDISPLAY can be connected to the multi24’s external bus either using the RJ12 connector or 
via the P2, G0, EA and EB contacts. The converter will generate a sample IEC-code to be used on the multi24. 
It is highly recommended to use this sample code at least as a starting point. Sample IEC-files suitable to use 
directly with your project are stored in the \UserFiles\IEC folder in the same folder the converter is located.  

 

Demo projects 
Fidelix provides a file with demo projects for the FX-RP multiDISPLAY. These demo projects are a good starting 
point for learning how to use the FX-RP multiDISPLAY. Note that these are sometimes incomplete, and in no 
way cover the totality of functionalities the FX-RP multiDISPLAY offers.  They are, however, a valuable source 
of inspiration and are very useful as examples.  

 

Software 
Overview 
To make projects for the FX-RP multiDISPLAY, two programs are needed, that can both be downloaded from 
our partner page. The usual work flow will be as follows: 

- Create pages to be loaded onto the FX-RP multiDISPLAY with the Fidelix Graphics Editor (.htm file format) 
- Convert those pages with the HTML to Display converter program  
- Copy the “UserFiles” folder generated by the Converter program to a µSD card 
- Start up the FX-RP multiDISPLAY with the µSD card in it and wait for the project to be loaded into the internal 

memory 
- Power off the FX-RP multiDISPLAY, remove the µSD memory card and power the display up again; your 

project is now loaded into the display and ready to be used 

 



Fidelix FX-RP multiDISPLAY  Programming manual  page 7 of 41  

Installation 
Our software is designed for Windows, and uses a lot of its embedded features. It also doesn’t have an 
installation wizard where a User Account Control check could be done to give administrative rights to the 
programs, which is why all our programs need to be granted sufficient rights in another way. There are two ways 
to do this: 

The first is by unblocking the downloaded files (in the file properties dialog box) in Windows file explorer as 
follows: 

 

 

 

NOTE: This needs to be done for all programs, as well as for all files! 

The second way to achieve the same goal is by following the steps below carefully; sometimes, the unblocking 
doesn’t seem to be enough, and then the following method needs to be used: 

1. Unzip the program (preserving the subfolder structure!) and save the folder on your local hard drive. 
2. Delete the downloaded zip-file. 
3. Re-zip the whole folder you just unzipped locally and save the new zip-file on your local hard drive 
4. Delete the previously unzipped folder (the folder unpacked from the downloaded zip-file). 
5. Now, from the locally generated zip-file, unzip again the same folder (again, preserving the subfolder 

structure!) and save the folder on your local hard drive. 
6. Delete the locally created zip-file. 
7. Do the same for all software AND the example folders. (IMPORTANT!) 

 



Fidelix FX-RP multiDISPLAY  Programming manual  page 8 of 41  

Fidelix Graphics Editor 
What you should know before you edit pages 

The Fidelix Graphics editor is not only used for making graphics for the multiDISPLAY. It is also used to make 
pages for our larger controllers; the FX-line and Spider, for our multiLINK protocol converter, and our webVision 
SCADA software. This means that some of the features in the graphics editor are not used for the multiDISPLAY 
(and that is also why we first make HTML pages to subsequently convert them to a format that the multiDISPLAY 
can read).  

To open pages with the graphics editor, make sure your project folder structure is similar to this: all .htm files in 
1 folder where there is also a folder called “Symbols”. 

In the “EditPoint” dialog box, following features are NOT recognised by the multiDISPLAY: CSS file, CSS Class, 
User level, Show info, Image rotation, Image Front colour and Symbol Front colour. All other features can be 
used as with the other products. 

The border-lines you see changing at different editing sizes (640, 800, 1024) are not used for the multiDISPLAY. 
For the multiDISPLAY, the easiest way to mark the available graphics area is to put an element without pointID 
at 320 (X) and 240 (Y) pixels like in the example files. 

Important to know is also that the project folder and the graphics editor program folder have to be on the same 
logical Windows drive (e.g. C:\) because of the same Windows rights reasons the editor needed to be unblocked. 

With the editor, a set of .htm pages can be made. Links can be made between pages. Any number of elements 
can be placed on the plane, keeping in mind the 320x240 pixel size of the display itself. This means that any 
element positioned outside these boundaries will be ignored by the converter. 

Make sure to read through the cheat sheet page that pops up when you 
click the question mark next to the three flags. It contains useful tips for 
working with the graphics editor. 

 

 

Choose “ShowPoints” in the left menu or click right on an empty spot in your 
page with no element selected and select “Show Points” for a fast way to 
batch change multiple points in your page; for instance, if you need to make 
5 identical pages for 5 devices, you can very quickly rename the points for 
device 1 as 11, 12, 13 … 19, for device 2 as 21, 22, 23 … 29 etc. 

 

Make sure to click the “Arrange” button in the 
bottom left corner of the screen to have access 
to some other very useful features of the 
graphics editor. 

 

 

 

 

 



Fidelix FX-RP multiDISPLAY  Programming manual  page 9 of 41  

The FXINDEX page 

After you have opened at least one page from the project folder, you can click the “Load” button in the middle 
column of the program. This will load the file called “FDXINDEX.HTM” to the centre column. This page is loaded 
from your project folder. You can also open this page to easily add links to other pages you make yourself. This 
menu is nowhere visible on the multiDISPLAY, it is just a faster way to navigate through the pages in your project 
folder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Be careful when switching from page to page through the menu; any unsaved changes will be lost, and there is 
NO popup box to remind you to save changes!  

Caution! Trying to load the FXINDEX page 
without it being present in your working 
folder will cause an error like this to pop up, 
and will cause the editor to completely 
freeze or get stuck in an endless loop of 
error report popups. 

The reason for this is because the graphics 
editor uses Internet Explorer scripts for its 
base functionality (that is why it is so small) 
that cannot be stopped from outside of 
Internet Explorer, 

So, make sure you have the file present 
in your working folder before loading it!  

 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 10 of 41  

Editing pages (a few pointers) 

- Once a page is opened inside the Graphics editor, you can drag elements around with the mouse or with the 
keyboard as you like (shift+arrow = 10px movements). 

- To open the EditPoint window, double click an element or press Ctrl+E. 
- Note the “border” images at X=320 and Y=240 in many of the example files to indicate how big the 

multiDISPLAY is. As they are outside the 320x240 drawing area, the converter will simply ignore them. 
- Any graphical element can be used, but the naming should follow the conventions like in the “symbols” folder 

inside your project folder. (e.g. Filename-0-640.jpg, Filename-1-640.jpg, Filename-2-640.jpg, …) 
Graphical elements have to be either .bmp, .gif (dynamic gifs don’t work on the display), .jpg, .jpeg or .png. 

- Display points are referenced by their pointID; POINT1 through to POINT250. 
Modbus master points are defined by using “MODBUS:” followed by the configuration of the point in the 
pointID input field. 

- If you want to use a multi-stage image (like the power buttons in the example pages), enter the desired values 
through which to toggle separated by spaces in the “Fixed value” field of the EditPoint dialog box: 

 

 

 

 

 

 

 

- Showing the value of a point is done by either selecting a 
“Number field” type element, or by ticking the “Show point 
value” tick box of a “Text” type element. 

 
 
 
 

- Showing text based on the value of a point (like for instance on/off, day/night or off / startup / slow / fast / 
error) is done by selecting a text type element and writing the desired values and corresponding texts in the 
yellow box inside the EditPoint dialog box. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 11 of 41  

- Making “+” or “-” buttons can be done using 
symbols and putting the step value, minimum 
and maximum value in the “Fixed value” field 

 

 

 

 

 
- Important ! Only set the Background colour property to “default” when necessary. This uses more memory, 

as the background needs to be calculated every time. Instead, use the page background colour wherever 
you can. 

For more detailed instructions on how to use the Fidelix Graphics editor, consult the graphics editor’s own 
reference manual on our partner webpage, and read further in this manual on the FX-RP multiDISPLAY specific 
syntax in the detailed programming section. 
 

HTML to Multi Display / Room Display Converter 

The program’s UI 

 

- The “Open file” button is used to start the process. Select the .htm page that you want to use as a start page 
each time the display is powered on. Also, any links inside your project to “CLOSE”, will direct the user to this 
page.  

The converter can also be used to check how much memory a single image will take after conversion. Instead 
of opening an .htm file you simply open the image and the converter will check how much memory will be 
needed using different packing methods. The best packing method is automatically selected during the 
conversion. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 12 of 41  

- The “Send to µSD-card” button copies the conversion result to a removable memory device containing a 
“UserFiles” folder.  
NOTE: When using an empty µSD card for the first time, a folder called “UserFiles” must be created manually, 
or the “UserFiles” folder, generated by the converter must be copied manually. 
NOTE: The converter program searches for a Windows removable memory drive that has a folder called 
“UserFiles” in its root alphabetically. This means that, for instance, if there is a drive “G:” that contains another 
memory card which also has a “UserFiles” folder, this folder will be overwritten.  

- The “µSD-card” tick box should only be selected (ticked) if you want to use the project from a μSD memory 
card.  When not ticked, the project size is limited to 768 kB (256 kB for V1 displays) and all project files will 
be copied into the FX-RP multiDISPLAY’s internal memory upon startup of the display. A μSD-card can be 
used for projects that are bigger than the internal memory, in which case only the font files need to fit into the 
internal memory of the FX-RP multiDISPLAY. By checking the µSD-Card checkbox, the converter will not 
make one file of the project, to be loaded into the internal memory, but instead, will generate a file containing 
only the used fonts. This is however, NOT recommended for actual installations. Instead, try to optimise the 
memory usage of your graphics (see Minimising binary file size). 
 
During development however, it IS recommended to use the “µSD-card” feature. This will speed up the 
starting of the display as only fonts need to be loaded into the memory. 
 
During commissioning the tick box should not be ticked. Make a final conversion and copy the project 
onto a µSD card. Now, simply put the µSD card in the display, power up the display and wait for a few seconds 
while the project is loaded into the internal memory. Then, take the power off the display, remove the µSD 
card, and power up the display again. You are now running your project from the internal memory. 

- The “Use Transparency for Images” selection defines if you want to have transparent background for images. 
The loading of images takes more time if a transparent background is used. If not selected then instead of 
transparency, the page’s background colour is used. 

- The “Use Transparency for Text” selection defines if you want to have transparent background for text. The 
loading of text takes more time if a transparent background is used. If not selected then instead of 
transparency, the page’s background colour is used. 

- The “No Warnings” selection discards some not so important warning messages during the conversion 
process. 

- The “Use Same Background for All Pages” selection is used if you want to have the same background image 
for all pages. This saves memory and helps to keep project size under 768kB. When using this feature, you 
have to define all objects as active object, because all static objects are discarded in this case. This means 
that for example you may define the page title as text object having pointID “Title”, in which case it is generated 
as an active object, but not linked to any physical register.  

- The “Large Memory (STM32F405)” tick box should be ticked when you are converting a project for a V2 
display (so, purchased later then 2016). This will allow for the full memory to be used. If you are converting a 
project to be used with a V1 display, which only has 256 kB of memory available for projects, make sure the 
box is unticked. 

- Two fonts can be selected for “small texts” and “large texts”. Tahoma is always the recommended font. 
NOTE: The FX-RP multiDISPLAY does NOT support edge softening for any text or number. This means that 
fonts and texts will look differently on the display than on your computer. Please make sure to thoroughly test 
any font you want to use with all available characters and sizes before handing over the project to your 
customer.  

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 13 of 41  

Converting HTML files to the DISPLAY format 

The HTMLtoDisplay program is used to convert HTML files to the format supported by the FX-RP multiDISPLAY. 
Conversion is started by opening the .htm file of the project’s main page. This is the page that will show up when 
the display is power up, or when a link pointing to “CLOSE” is used. The converter will go through the links in 
the page and any linked page. This means the converter needs to be started only once. If any dead links are 
found, the process will be aborted. During conversion, the results will be stored into \UserFiles folder.  

This means that if you want to have pages that are forced to show up by the Modbus master, but that cannot be 
accessed through the normal UI, you have to include a “hidden” link somewhere in the project. This hiding can 
be done -for instance- by having a password protected settings page with on it a 1x1 pixel link that uses the 
“Hiding” feature. This way the chances of accidentally opening that page are reduced to almost none. 

Windows zoom settings and the converter 
The converter works in such a way, that it loads each page, and then takes a screenshot of your actual computer 
screen. This means that during conversion, no other windows are allowed inside or on top of the converter 
window, as whatever is placed on top, will be visible on the display. 

Make sure to set the Microsoft Windows zoom or scale factor to 100% in the Windows settings: 

 

 

 

 

 

 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 14 of 41  

Having the wrong zoom factor will result in a converter  
window looking like this: 

 

 

 

 

 

 

Troubleshooting the converter 
The converter works using a lot of embedded Windows and Internet Explorer features. This unfortunately also 
means that it is recommended to do only 1 single conversion, and then close the program. You will easily 
encounter program crashes when doing multiple very similar conversions. In that case, it might happen that an 
instance of the program stays in the computer memory, even while visually closed. In such a case, start the 
Windows task manager and manually stop the “BMPconvert” process: 

 
  



Fidelix FX-RP multiDISPLAY  Programming manual  page 15 of 41  

Getting projects on the multiDISPLAY 
Projects can either be loaded into the internal memory of the multiDISPLAY, or be stored on a µSD card. The 
advantage of the internal memory is its speed, the advantage of the µSD card is its size. Most projects will easily 
fit into the internal memory of the FX-RP multiDISPLAY, but for complex, extensive graphics with many pages, 
if might be necessary to use a µSD memory card.  

We recommend using the internal memory as long as this is possible, because this will limit the number of read 
operation from the µSD card and thus guarantee a longer life span of your project. 

Loading projects into the FX-RP multiDISPLAY’s internal memory 
Make sure that when you want to use the graphics from the FX-RP multiDISPLAY’s internal memory, the “uSD-
card” tick box is NOT ticked. When the box is not ticked, the converter will generate 1 file that contains the whole 
project and that will be copied into the display’s internal memory. When the box is ticked, the same file will only 
contain the used fonts of the project, and links to the files on the µSD card. 

With an FX-controller 
From an FX-Controller it is possible to load the generated binary file to the FX-RP multiDISPLAY through the 
module update feature on the controller ( > Programming > Module versions). In order to see the graphics in the 
list, copy the generated “MULTI-DISP.dat-xxxx” file you will find inside the “UserFiles” folder on your PC to the 
\HDisk\Fidelix\DATA folder on the FX. Note that this folder is different than the one used for firmware updates. 
The module update feature can also be used to update graphics of FX-RP multiDISPLAYs connected to a 
multi24’s external bus. This feature is called “pass-through”. To enable the pass-through feature, the “MULTI-
DISP.dat-xxxx” file name has to be changed to have the PASSTH-XX- prefix, where XX is FX-RP 
multiDISPLAY’s Modbus address on the external bus. For example, when uploading a project to an FX-RP 
multiDISPLAY, connected to the external bus of a multi24 on address 10, the file name should be “PASSTH-10-
MULTI-DISP.dat-xxxx”. New files copied to the \hdisk\fidelix\data folder will automatically show in the firmware 
selection frame. 

With a multi24 module and a PC 
Using the multi24 programming tool, the same “.dat-xxx” files can be selected in the “Display graphics” section. 
The program will then ask the Modbus address of the display and the multi24 will be used as pass-through 
handler. 

With a µSD memory card 
It is possible to update the internal memory from a μSD-card, formatted in FAT32. During the power up 
sequence, the FX-RP multiDISPLAY will check if a “MULTI-DISP.dat-xxxx” file is found on the μSD-card and if 
found the file is copied into the internal memory. After that, the μSD-card can be removed, and the display 
restarted (power off and back on). From then on, the internally stored pages are used. The advantage over using 
the graphics from the µSD card is the obvious lower number of reads from the µSD card, but mainly the speed.  

Make sure to verify if your FX-RP multiDISPLAY is of the first generation or the second, as the available memory 
is tripled in the V2 displays. In the converter, you can tick the “Large Memory (STM32F405)” tick box when you 
have a V2 display so the converter will allow you to convert larger projects. 

Using graphics from a μSD-Card 
During the development stage of graphics or when your project doesn’t fit the internal memory, you can use a 
μSD-card to store graphics. To do so, tick the “uSD-card” tick box in the converter and copy the generated 
“UserFiles” folder to the μSD-card using a memory card reader. Insert the card into the memory card slot of the 
FX-RP multiDISPLAY and reboot the FX-RP multiDISPLAY.  

By using a μSD-card you can quickly test if graphics are working as expected without the need to load images 
into the internal memory of the FX-RP multiDISPLAY. A μSD-card also needs to be used if more than 768 kB 
storage space is needed.   

While possible, it is NOT recommended to use graphics from a memory card. Instead, try optimising your 
graphics (see Minimising binary file size). 



Fidelix FX-RP multiDISPLAY  Programming manual  page 16 of 41  

When using a µSD memory card, please make sure you are using cards of good quality from a trustworthy 
manufacturer. SDXC cards are not readable by the FX-RP multiDISPLAY. The memory card should be formatted 
in FAT32. A good reference list for memory cards’ quality can be found here: https://elinux.org/RPi_SD_cards. 

Minimising binary file size 
If your project does not fit into the 768kB (or 256 for V1 displays) reserved for internal data storage, you may 
either use a μSD-card for data storage (not recommended) or try to optimise your project to use less memory. 
Here are some tips to keep your total project size as small as possible: 

- Do not use more than 255 colours in images. The easiest way to accomplish this, is to convert your images. 
The embedded compression of the converter only works with < 255 colours. Any images using more than 
255 colours will not be compressed at all. 

- Do not change the image size using object properties. Instead use the real height and width of the image. 
- Minimise the colour count in pictures. Large areas using a single colour will not take much memory. Even if 

the colour count is less than 255, more memory is needed if more colours are used.  

- For dynamic objects, use Text size 12. The “bold” option can be used. Font size 12 is embedded in the 
firmware, all other font sizes will take up space from the internal memory. 

- If a larger font size is needed, keep in mind that a larger font size takes more memory than a smaller. So do 
not use larger fonts than needed.  

- Minimise different font sizes used. Every different font size uses some space of the memory. 
- Try to have only “active” elements; this will make the background image easier and thus smaller. You can 

make an element active by giving it a PointID. Make sure not to use a significant one already in use, like 
“POINTxx”, “LINK”, but rather go for something like “UNUSED_ELEMENT” or “IMAGE”. 

Multiple projects on one μSD-Card 
Multiple graphic projects can be stored on a single 
μSD-Card. This feature is useful if you have many 
language versions of the same project or for 
demonstration purposes. Links to a different 
project folder can be defined with 
“PATH:UserFiles_xxx” syntax in the link field as 
shown on the right. 

The folder name should be “UserFiles_xxx” where 
xxx can be anything you want. The last character 
of the folder name is loaded into register 3013, so 
the Modbus master can detect which project is 
loaded. The FX-RP multiDISPLAY demo projects 
folder contains an example project folder named 
“multi language example” which will help you on 
your way. 

Additionally, instead of using 
“PATH:UserFiles_xxx”, 
“LOCKPATH:UserFiles_xxx” can be used. The difference is that with “LOCKPATH”, the folders on the µSD card 
get renamed. The original “UserFiles” folder will be named “UserFiles_orig”, and the folder in the link will be 
renamed “UserFiles”. Note that because of this, you can only use “LOCKPATH” once with each µSD card.  

The main use of the “LOCKPATH” feature is to be able to send out displays with µSD cards and only choose on 
site what program will be loaded. If the selectable projects are compiled to fit in the internal memory of the FX-
RP multiDISPLAY, selecting them will load the desired project into the memory, and the µSD card can then be 
removed, making this a very useful feature for situations where you don’t know in advance with what equipment 
the FX-RP multiDISPLAY is going to be used. 

  

https://elinux.org/RPi_SD_cards


Fidelix FX-RP multiDISPLAY  Programming manual  page 17 of 41  

Uploading a project via Modbus 
Graphical pages stored on the FX-RP multiDISPLAY’s internal memory or on the µSD can be updated through 
Modbus registers 65278 – 65343 by any Modbus master: 

65278 - 65341 64 data registers 
65342 statusCPU status from substation 
65343 statusDISP status to substation 

 
1) To start a transfer, the master sets statusCPU register to 0xAAAA (upload request) 
2) statusDISP receives 0x0000 from the display and the display will read "Loading data..."  

(ready for download) 
3) Modbus master sends the first 128 bytes of the bin file and sets statusCPU to 0x0001  

(uploading part 1) 
4) statusDISP receives 0x0001 from the display (download part 1 completed) 
5) Modbus master sends the next 128 bytes of the bin file and sets statusCPU to 0x0002  

(uploading part 2) 
6) statusDISP receives 0x0002 from the display (download part 2 completed) 
…) ... (repeat until the file is sent) 
n-1) Modbus master sets statusCPU to 0xBBBB to signal that file is sent (upload completed) 
n) statusDISP receives 0x2222 from the display (download completed) 

 
statusCPU (written by master) 
0xAAAA Initiate a file transfer (requested upload) 
0x00** Counter for which part we are sending (uploading part x) 
0xBBBB Last part of the file was sent (upload completed) 
  
statusDISP (written by Display) 
0x0000 ready to receive the file (ready for download) 
0x00** counter for which part was received completely (downloading part x) 
0x2222 finished receiving the file (download completed) 

Detailed programming 
Introduction 
The .htm pages that will constitute your FX-RP multiDISPLAY project consist of so called “active elements” and 
background images. Any element (text or image) you place inside the 320 by 240 pixels available space that 
doesn’t have a PointID (= “Unknown”) is considered and treated as background image. 

To see the pointID of any element in the 
Fidelix Graphics Editor, either double click 
the element, or press CTRL+E. 

Any element that does have a PointID 
(keywords mentioned later, or freely chosen 
by yourself) will be placed on top of that 
generated background image. 

When used as Modbus slave, each of the 
250 available points will look something like 
the image on the right. 

The text used in the yellow part is to 1) 
define the number of decimals and the unit 
displayed, 2) help to get the graphics correct 
during design. 

Ticking “Show point value” will enable the 
displaying of the actual value of the point or register mentioned in the PointID field.  



Fidelix FX-RP multiDISPLAY  Programming manual  page 18 of 41  

When not ticked, the middle column needs to contain the texts that will be shown, when the point has the 
corresponding value specified in the left column (see “Status texts”). 

 
Many projects will have more than 1 page. A link can then be made to other pages (see “Links”). Only “text” or 
“Symbol” elements can be used to link to other pages by adding the name of the target page. In the “LINK” box 
of an active element. A link can only be used from an active element, so if your element has no other functionality, 
you can simply use “LINK” as PointID. 

When used as Modbus master, the pointID will be used as the field to enter the correct parameters for each of 
the slave registers. The syntax is described later in this document. 

 

Visualisation customisation 
Any field of “text” or “Number field” type can be used to set values. In order to do so, “Controller set value” has 
to be selected in the EditPoint dialog box to make a point’s value editable from the FX-RP multiDISPLAY.  
A number keypad will appear when the field is clicked, and the selected value is then attributed to the point. 

Using the “Background color” selection box, multiple partially transparent elements (Symbols using a gif or png 
file with alpha channel) can be on top of each other, where the element “beneath” can by dynamic too. Always 
use a fixed colour unless you really need the transparency, as this uses more calculation power. 
Transparency is calculated for the zero-value element, and a new symbol is drawn on top of the existing one 
without clearing it, meaning that different shapes for the element on top might not work as expected.  

Instead, elements can change colour, or you can have a circular element with different symbols on top of it. The 
transparency feature is especially interesting for writing values on top of a large element that can change colour 
based on the status of the process that is being visualised. 

The functionalities described 
hereunder are to be used by 
appending the according tag behind 
the “POINTxx” identifier in the 
pointID field of the EditPoint dialog box (as shown on the image). Features (and thus the ‘tags’) can be freely 
combined in any order. 

NOTE: The content of any register can also be shown by using the point ID “REGxxxx”. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 19 of 41  

- You can choose to show the value of a point, or to display a text according to the point’s value. Showing the 
actual value is done by either selecting a “Number field” type element, or by ticking the “Show point value” 
tick box of a “Text” type element. Ticking the “Controller set value ?” tick box will generate a popup on the 
display when the value is clicked. Note that the user can now enter any desired value, so it is up to the 
connected controller to evaluate this user entered value. 
 

Showing text based on the value of a point (like for instance 
on/off, day/night or off / startup / slow / fast / error) is done 
by selecting a text type element and writing the desired 
values and corresponding texts in the yellow box inside the 
EditPoint dialog box. 
More details can be found in the “Status texts” section later 
in this document. 

- To use a multi-stage image (like an “on/off” power button), enter the desired values through which to toggle 
separated by spaces in the “Fixed value” field of the EditPoint dialog box:  

 
- #UNIT:xx where xx is the unit that is used to show the point. These units can either be programmed by the 

Modbus master (like it is done if the FX-RP multiDISPLAY is used with an FX controller or a multi24), or can 
be defined in the EditPoint dialog box in the graphics editor.  
For text type fields, the unit can also be defined in the “Text” field, in which case the unit is parsed from the 
end of the text. For example, “21.0°C” will define one decimal precision and degrees Celsius as unit. 
 

NOTE: A unit cannot be freely selected. The FX-RP multiDISPLAY firmware has a predefined list of units that 
can be used. If you need a unit that is not listed please contact us, and the needed unit can be added to our 
next firmware release. List of currently available units: "°C", "Pa", "bar", "V", "l/s", "m3/h", "%", "m3", "l", "mA", 
"Wh", "kWh", "MWh", "ppm", "K", "s", "min", "h", "Hz", "W", "kW", "MW", "Lx", "km/h", "°", "°/s", "l/h", "l/100km", 
"%Rh", "ohm", "N", "kg", "ms", "hPa", "W/m2", "mm", "cm", "km", "m", "€", "€/kWh", "A", "°F", "CFM", "GPM", 
“%LIE”, “%LEL”, “%vol”, “m3/s”, “rpm”, “m/s” 

- #UNITSPACE can be added to put a space between the value and the unit. The default setting has the unit 
directly concatenated behind the point’s value. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 20 of 41  

- #DIVIDER:xx where xx is used divider. 10 
for 1 decimal, 100 for 2 decimals, 1000 for 3 
decimals. 
 
REMINDER: For text type fields, the unit 
can also be defined in the “Text” field, in 
which case the divider is parsed from the 
end of the text. For example, “21.0°C” will 
define one decimal precision and degrees 
Celsius as unit.    

- #DIGITS:xx, where xx is maximum 15. It defines the number of digits before the decimal sign. If the value is 
bigger than the number of digits specified, the full value will be displayed. 

- #MIN:xx where xx defines the minimum allowed value for the point. It is useful if for example a set point’s 
minimum value needs to be defined. Note that this value is before division, for example if one decimal is in 
use and you need to limit the minimum value to 10.0, use parameter “#MIN:100”. 

- #MAX:xx where xx defines maximum allowed value for the point. It is useful if for example set point’s 
maximum value needs to be defined. Note that this value is before division. For example, if one decimal is in 
use and you need to limit the maximum value to 100.0, use parameter “#MAX:1000”. 

- #NOSCALE hides the low, middle and high values for a “Bar Display” point. You can use for example text 
objects to define the scale, or leave the scaling out completely. The hiding is particularly useful when your 
value has decimals, as the Low, Middle and High values are before division, for example if one decimal is in 
use and you need to limit minimum value to 10.0 use parameter “#MIN:100”. The Middle value can be omitted, 
and even HAS to be omitted when using this combined with the “#NOEDIT” tag. 

- #NOEDIT makes a Bar Display element only show a value, whereas by default, a bar display element can 
also be used as a slider to get a set value from the user. When this tag is used, the middle value of the Bar 
Display element needs to stay empty, as it is being used as container for the returned value, so #NOEDIT 
should always be used in combination with #NOSCALE.  

- #INFO:xx, where xx is free text that will be added as a comment into the IEC code file that the converter 
generates. This will only make the IEC code file easier to read, there is no real functionality connected. 

- #BYTE1, #BYTE2, #BYTE3, #BYTE4 gives access to the different bytes of the point’s value. As each point 
has two registers for its value (see below for more detailed register structure), BYTE1 represents the least 
significant byte, BYTE4 the most significant. Values are displayed as decimal values from 0 to 255. 

- #BIT0, …, #BIT31 gives direct access to each bit of the point’s value. BIT0 represents the least significant 
bit, BIT31 the most significant. 

- #BITGROUPxx:yy, where xx is the number of bits (2..6) you want to visualise and yy is the first bit of that 
group (0..30). The groups are allowed to overlap 
Example: POINT1#BITGROUP3:0 will show the three lowest bits of POINT1 (bit2, bit1 and bit0) 
Example: POINT2#BITGROUP5:14 will show five bits, beginning at bit 14 of POINT2 (bit18, bit17, bit16, bit15 
and bit14) 

- #MOMENTARY:xx can be used to send out ‘impulses’ of ‘xx’ 
seconds from a Modbus slave display. This should be used 
in combination with the ‘fixed value’ box in the EditPoint 
dialog box. Pushing the button in the example will set 
POINT2 to ‘1’ for 7 seconds, after which the first value, ‘0’ will 
be set back to POINT2. Be aware that there is no checking 
done if the master has received the impulse; the display 
merely sets the value for the defined time. This function is 
only available during slave mode operation. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 21 of 41  

IEEE-754 Floating Point format 
Normal points on the display are represented as 32-bit values covering two consecutive registers. If the 
connected Modbus master is however sending out values as floating point values, the aforementioned 
“REGxxxx” syntax can be used with addition of “:FLOAT” or “REV_FLOAT”, where “REV_FLOAT” is used when 
the registers are in reversed order. The register number in the pointID is the first of two consecutive registers 
used for the floating-point value. 

      

Pay close attention to the registers attributed to POINTS in the display; you can use a mix of POINTx and 
REGyyyy pointID’s, but each POINT uses three registers (see the register structure later in this document). 

NOTE: when using floating point values, the values shown are READ-ONLY and no other graphical elements 
can be attributed to it. So only the actual received value can be visualised. 

Increment, Decrease, Minimum & Maximum  
When a symbol or button is selected, this 
can be used to increment or decrease the 
value of a point. For this, the pointID just 
contains the point name (e.g. POINT145), 
and in the “Fixed value” field, 3 numbers, 
separated by spaces, define the 
incrementation or decrementation step, the 
minimum value and the maximum value a 
push on the symbol will trigger (e.g. writing 
“+1 0 100” means you will increment the 
point’s value with steps of 1 to a maximum 
of 100). #MIN and #MAX in the pointID field have no influence here, and are ignored, so it best to omit them 
completely. Note however that the minimum and maximum value you define in the “fixed value” field must not 
only be adjusted to the point’s #DIVIDER (so it is the value before division), but will also overrule any #MIN and 
#MAX value you define in the actual displaying of the point’s value.  

Special symbols can be defined for points with #MIN and/or #MAX values defined in the pointID field of the 
EditPoint dialog box: the symbol with name formatted as “NameOfTheSymbol-min-640.gif” will be displayed 
when the point’s value = #MIN, the symbol with name formatted as “NameOfTheSymbol-max-640.gif” will be 
displayed when the point’s value = #MAX, the symbol with name formatted as “NameOfTheSymbol-0-640.gif” 
will be displayed when the point’s value = zero (this image will be shown if #MIN or #MAX = zero), and the 
symbol with name formatted as “NameOfTheSymbol-mid-640.gif” will be displayed when the point has any value 
other than #MIN, #MAX or zero. 

You can also use other points as minimum and 
maximum. In that case, both minimum and 
maximum need to be points, meaning it is not 
allowed to have a fixed upper limit and a variable 
lower limit. When using the minimum and 
maximum like that, make sure you don’t allow the 
user to enter values that are not possible; often 
you’ll want to set these dynamic minimum and 
maximum values from the Modbus master and not 
show them on screen at all. 

Math operators  
Display points can also contain a locally calculated value based on 2 other points. Know that all values are 
considered as integers, so divisions shown on the screen are not taken into account, and any value for a division 



Fidelix FX-RP multiDISPLAY  Programming manual  page 22 of 41  

smaller than “1”, will give you the result of zero. You can use math operators for instance to calculate the local 
setpoint for a building-wide general, dynamic setpoint with local offset, or to let the end-user enter the water or 
energy price they pay, and, by simply sending the actual consumption to the screen, show the price that needs 
to be paid. 

To use math operators, simply add a suffix to the pointID field: 
POINTxx#MATH:POINTyy+POINTzz 
POINTxx#MATH:POINTyy-POINTzz 
POINTxx#MATH:POINTyy*POINTzz 
POINTxx#MATH:POINTyy/POINTzz This function is only available during slave mode operation. 

Status texts  
By default, the number of different 
texts for fixed values (so called 
“Status Texts”) is 20. These are texts 
like “On, Slow, Fast” that you can 
define in the yellow box of the 
EditPoint dialog box when editing a 
Text type element. This is useful 
when you for instance make a button 
with three statuses (0, 1 and 2) and 
you want to have a text changing 
accordingly to show the end user 
what status the button is currently in. 
Make sure you untick the “Show 
point value” tick box to show the entered texts. 

The Graphics editor limits the number of these statuses to 20, but you can add more by creating a file inside 
your project folder containing the texts for each status. The file is linked by writing its name in the second “Text” 
box like this:  

The content of the linked .txt 
file should be formatted as 
follows: 
0, value zero, #000000 
1, first text, #000000 
2, second text, green 
3, third text, #000000 
4, fourth text, #000000 
…  
where you first write the value, then the texts to show on the display and then the HTML colour code. 

Status texts take up memory upon the loading of a page. All texts are loaded into memory when the page is 
loaded. That is why you can share status texts between points to save memory space. This is done by using 
100000000 as the first status value for all the points with which you want to share the status texts. One of those 
points will then be stored into the memory, and all others only referenced. Make sure to copy all status texts into 
all points you want to use them in, as you cannot know of which point the status texts will be loaded into the FX-
RP multiDISPLAY’s memory.  

Using this feature is only necessary if you notice the page loads very slowly, or if you actually get an “out of 
memory” message when the page is loaded. It is possible to combine this feature with the previous one to have 
multiple points with more than 20 possible status texts, like, for example, when you are making a text input page. 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 23 of 41  

Time and date, temperature, firmware version and Modbus address 
Time, date, locally measured temperature and the display’s firmware version and Modbus address can be 
displayed in various ways: 

pointID Further customisation in “Text” field of the “EditPoint” dialog box Result 
TIME n/a 16:23:45 
TIME2 n/a (also available in registers 3004+3005) 16:23 
TIME3 hh / HH  24h / 12h (without leading zero)  

mm minutes (always with leading zero) 
ss seconds (always with leading zero) 
tt AM / PM 
dd day (without leading zero) 
MM month (without leading zero) 
yy / yyyy Year with 2 or 4 digits 
other characters displayed as written (h, m, s, t, d, M, y, or x not allowed) 

TIME4 hh / HH  -  xh / xH 24h / 12h (with leading zero  -  without leading zero)  
mm minutes (always with leading zero) 
ss seconds (always with leading zero) 
tt AM / PM 
dd  /  xd  day (with leading zero  /  without leading zero) 
MM  /  xM month (with leading zero / without leading zero) 
yy / yyyy Year with 2 or 4 digits 
other characters displayed as written (h, m, s, t, d, M, y, or x not allowed) 

DATE n/a (also available in registers 3001+3002+3003) 03.09.2014 
VERSION n/a  (also available in register 3018) 1.32 
TEMPERATURE n/a  (also available in register 3000) 20.0°C 
TEMPERATURE_C0 n/a 20°C 
TEMPERATURE_C1 n/a  (also available in register 3000) 20.0°C 
TEMPERATURE_C2 n/a  (also available in register 3015) 20.00°C 
TEMPERATURE_F n/a 68.0°F 
TEMPERATURE_F0 n/a 68°F 
TEMPERATURE_F1 n/a 68.0°F 
TEMPERATURE_F2 n/a  (also available in register 3014) 68.00°F 
MODBUS_ADDRESS n/a 10 

 
A few examples of how the time and date will be displayed with below configurations in the EditPoint dialog box: 
 
 

 

 

DD/MM/YYYY - HH:MM 

23/09/2023 – 08:15   23/9/2023 – 8:15       23/09/’23 – 8:15 
06/03/2022 – 18:45   6/3/2023 – 18:45       6/03/’22 – 18:45 

 
 
 

 
DD/MM/YYYY - HH:MM 

08/05/2023 – 18:15   5-8-23 6:15 PM       8-5-’23  6:15 
26/11/2024 – 09:01   11-26-24 9:01 AM       26-11-’24  9:01 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 24 of 41  

Internal time schedules 
The FX-RP multiDISPLAY has 5 internal time schedules, which can be accessed either from the settings page, 
or by making links to them yourself (see below, “Links”). Time schedules cannot be edited by an external Modbus 
master or slave, only from the local user interface. Time schedules can have any status from 0 to 15, though 
mostly only 0 and 1 are being used. You can of course attribute any action on your Modbus slave or master to 
any of the 16 available values.  

NOTE: Time schedules hold their value, as long as no event is encountered that will change their value. This 
means that for instance, when you only select weekdays, but leave the time schedule at value 7 as your last 
entry on Friday, the time schedule will stay at 7 throughout the weekend. 

You can change this behaviour and have the display reset the internal time schedules to zero at midnight for the 
unselected days by including a file named “timeschsetup.txt” into your project, containing a single line 
“SET_UNUSED_TIMESCH_DAYS_TO_ZERO”. Save this file in the root folder of your project and run it through 
the converter (version 1.39 or higher). 

You can make your own graphics for the time schedules, to make them correspond better to the rest of the 
project layout and graphical style. For this, use following pointIDs:  

Day selection:  
0 = not active 
1 = active 

TIMESCH1_MON 
TIMESCH1_TUE 
TIMESCH1_WED 
TIMESCH1_THU 
TIMESCH1_FRI 
TIMESCH1_SAT 
TIMESCH1_SUN  

… 
… 
… 
… 
… 
… 
… 

TIMESCH5_MON 
TIMESCH5_TUE 
TIMESCH5_WED 
TIMESCH5_THU 
TIMESCH5_FRI 
TIMESCH5_SAT 
TIMESCH5_SUN 

Time schedule status: 
Any integer value from 0..15 

TIMESCH1_STATE1 
TIMESCH1_STATE5 
TIMESCH1_STATE2 
TIMESCH1_STATE6 
TIMESCH1_STATE3 
TIMESCH1_STATE7 
TIMESCH1_STATE4   
TIMESCH1_STATE8 

… 
… 
… 
… 
… 
… 
… 
… 

TIMESCH5_STATE1 
TIMESCH5_STATE2 
TIMESCH5_STATE3 
TIMESCH5_STATE4 
TIMESCH5_STATE5 
TIMESCH5_STATE6 
TIMESCH5_STATE7   
TIMESCH5_STATE8 

Time: 
Hours are in 24-hour format 

TIMESCH1_HOUR1 
TIMESCH1_MIN1 
TIMESCH1_HOUR2 
TIMESCH1_MIN2 
TIMESCH1_HOUR3 
TIMESCH1_MIN3 
TIMESCH1_HOUR4 
TIMESCH1_MIN4 
TIMESCH1_HOUR5 
TIMESCH1_MIN5 
TIMESCH1_HOUR6 
TIMESCH1_MIN6 
TIMESCH1_HOUR7 
TIMESCH1_MIN7 
TIMESCH1_HOUR8 
TIMESCH1_MIN8 

… 
… 
… 
… 
… 
… 
… 
…
… 
… 
… 
… 
… 
… 
… 
… 

TIMESCH5_HOUR1 
TIMESCH5_MIN1 
TIMESCH5_HOUR2 
TIMESCH5_MIN2 
TIMESCH5_HOUR3 
TIMESCH5_MIN3 
TIMESCH5_HOUR4 
TIMESCH5_MIN4 
TIMESCH5_HOUR5 
TIMESCH5_MIN5 
TIMESCH5_HOUR6 
TIMESCH5_MIN6 
TIMESCH5_HOUR7 
TIMESCH5_MIN7 
TIMESCH5_HOUR8 
TIMESCH5_MIN8 

To show the current value of a time schedule on the screen, use REG3007 through to REG3011 as your pointID 
to show the value of time schedules 1 through to 5 (see display parameters). 

Only this current value (or “output status”) of the time schedule is available over Modbus. All setup mentioned 
in the above table is only available on the local screen of the FX-RP multiDISPLAY. 
  



Fidelix FX-RP multiDISPLAY  Programming manual  page 25 of 41  

Links  
Links can be specified from any active point, by selecting the 
targeted page in the link field of an object. If there is no point 
attributed, but you just want to make a link, use “LINK” as the 
pointID. Note that some of the visualisation features may not 
work when adding a link to an element that also has other 
uses. (e.g. when using “REG3007” as pointID and a symbol 
to represent the value of the register, adding a link to the 
symbol, will disable the changing of the symbol. 

- If “CLOSE” is specified in the link field of an object, it will 
automatically link to start page of the project. 

- If “TIMESCH1”, “TIMESCH2”, “TIMESCH3”, “TIMESCH4” 
or “TIMESCH5” is specified in the link field of the object, 
the corresponding time schedule page will be opened.  

- If “NAVIGATEBACK” is specified in the link field of the object, the link will go to previous page. Navigate back 
will list up to 4 previous pages. Pressing a “CLOSE” link will clear the navigation history. 

- If “MODBUS” is specified in the link field of the object, a Modbus master status page is opened. Do not use 
this when the display operates in slave mode, as this will open a page with only zero values, since there is 
no Modbus master communication happening. 

- If “CALIBRATION” is specified in the link field of the object, the calibration of the screen is triggered. After the 
calibration through this link, the display will go back to the page the link was triggered from, and NOT go into 
the settings page (like it does when you trigger the calibration by pressing in the same spot on the display for 
10 seconds). 

- If “DISPLAY_SETTINGS” is specified in the link field of the object, the link will go to settings page immediately 
(a page otherwise brought up by long pressing on the same place on the multiDISPLAY). 

- Dynamic links can be created by using the value of a display POINT to select the page to navigate to.  
 

Writing “#POINTxx” after the page 
name in the link field will direct the user 
to the specified page_Value-Of-The-
Point.htm (e.g. when the value of 
POINT29 = 5, a link made by using 
“l inkedpage.htm#POINT29” will 
navigate the user to linkedpage_5.htm).  
 

IMPORTANT! Make sure the name of 
your dynamic pages set is sufficiently 
different than any of the other pages in 
your project or the converter can run in to difficulties creating the dynamic links.  
 
The converter will look for all pages that might be targetable in your project folder and include them. If the 
used POINT has a value for which there is no page available, a standard white error page with “Invalid file: 
M24_pagename.bin” message will be displayed. Upon closing that error page, the whole project will be 
reloaded and the user thus redirected to the first page of the project. It is therefore VERY IMPORTANT you 
don’t make the points used for dynamic linking freely changeable, and you are very careful in programming 
your external Modbus master to only write values for which there are pages into the displaypoint you are 
using for the dynamic links. Having display native error messages pop up is obviously not advisable for end-
user applications. This function is only available during slave mode operation. 

- Writing “::xx” after the page name in the link field (e.g. Startpage.htm::120) will trigger a timer upon the loading 
of the page after which the link is followed automatically. “xx” is the number of seconds to wait before changing 
the page. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 26 of 41  

- If “#PASSWD:xx” is suffixed to the pointID from which the link is called (whether this be an actual display 
point or just “LINK”), a popup is shown before the link is followed. The password can be a value between 1 
and 65535, but is a fixed value, and can only be changed in the graphics editor, before conversion. Entering 
a wrong password will keep the “Enter Password” dialog box open with a message: “Incorrect Password!”, 
upon which the user can try again. To close the dialog box, press the “C” button.  

- Writing “#MODBUS:xx” after the page 
name in the link field allows following 
that link by setting Modbus register 
3044 or 3046 from the Modbus master. 
xx is the value used for the 
corresponding link, each link should 
have a separate value.  
For example, the link field can contain 
“alarm.htm#MODBUS:13”, which 
means that the alarm.htm page will be 
opened if “13” is written to “open page 
register” 3044 or 3046.  
This feature is used to “force” pages to appear. The links will most likely be hidden from the user, by putting 
them in a small “invisible” box in a corner of the screen (10px X 10px in the background colour) or by putting 
them on a (password protected) “settings page” in your project, and are thus only activated from the Modbus 
master side when user action is required. The pages can be “force shown” at any given time, meaning the 
user doesn’t have to be on the page containing the link for the linked page to “pop up” when instructed so by 
the Modbus master. This function is only available during slave mode operation. 

- If “#HISTORY” is suffixed to the pointID from which the link is called (in 
this case, the linked must be called from one of the 250 points), the 
history graph window is opened when the link is clicked, and the latest 
values (history, trend) is requested from the Modbus master. The 
history functionality is explained later in this document. 
This function is only available during slave mode operation. 

 

 

- If “#LUT” is suffixed to the pointID from which the link is called (in this 
case, the linked must be called from one of the 250 points), a graphical 
conversion table (look-up table) is opened and data is requested from 
the Modbus master device. The Modbus master has to send the 
conversion table data for the requested point. The look-up table 
functionality is explained later in this document. 
This function is only available during slave mode operation. 
 

 
  



Fidelix FX-RP multiDISPLAY  Programming manual  page 27 of 41  

Strings / texts  
It is possible to define a text object that loads a string from certain registers by selecting the “Show Point Value” 
selection box and entering “STRING” as a text. String selection is done by changing the object value. The 
object’s value can be preselected using format “STRING_XXYY” where XX is the string section number and YY 
is the selected string. See the section “String Variables” later in this document for more details.  

Entrance control user panel  
If “PIN” is specified in the link field of the object, PIN-Code entering dialog will be opened. This function is useable 
only if DU-10 mode is activated (RFID reader mounted). 

The FX-RP multiDISPLAY can be equipped with a RFID reader which activates DU-10 mode. If DU-10 mode is 
activated the DISPLAY will communicate also as a DU-10 device using next Modbus address (If MULTI 
DISPLAY has address 10, DU-10 will have address 11). If DU-10 mode is activated the FX-RP multiDISPLAY 
can be used as an intruder alarm user panel.  

Customising keypad buttons 
Keypad buttons can be customised to make them match the project design. Custom buttons have to be exactly 
65x35 pixels, except the OK button which has to be 135x35 pixels. Buttons should be saved as .png files and 
located in a subfolder called “Buttons” in your project folder. The converter will add the custom buttons 
automatically if files are found from Buttons folder. The file names indicate the function of the button and the 
following names should be used:  

FdxButton0.png 
FdxButton1.png 
FdxButton2.png 
FdxButton3.png 
FdxButton4.png 
FdxButton5.png 
FdxButton6.png 
FdxButton7.png 
FdxButton8.png 
FdxButton9.png 
FdxButtonBackSpace.png 
FdxButtonPlusMinus.png 
FdxButtonCancel.png 
FdxButtonDot.png 
FdxButtonOk.png 

The multiDISPLAY demo projects folder contains an example project folder named “Keypad example” that will 
help you on your way. 

Extended UTF-8-character support 
The FX-RP multiDISPLAY supports UTF-8 characters, but only Latin characters are loaded by default. The 
default character set includes following characters: “ ! \ " # $ % ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B 
C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ \ ] ^ _ ` a b c d e f g h I j k l m n o p q r s t u v w x y z { | } 
~ ä ö å Ä Ö Å ° ”. If you need characters that are not included by default you can define a custom character set 
by adding a “CharacterSet.txt” file to you project folder. Type all the required characters to CharacterSet.txt file, 
including also the default characters if those are needed (save the file using UTF-8 format). Note that every 
character takes some memory, so it is not recommended to define more characters than you need.  

The multiDISPLAY demo projects folder contains an example project folder named “multi language example” 
inside which the Chinese, Finnish and Russian project folders each contain an example file that will help you on 
your way. 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 28 of 41  

Modbus master functionality 
PointID’s in the Graphics Editor 
To use the FX-RP multiDISPLAY as a Modbus master, the correct pointID must be used in the graphics editor. 
Point names starting with “MODBUS” are detected as Modbus master definition. The pointID should also contain 
fields for Modbus address, register number, Modbus device type and register format.  
A pointID containing all needed information looks something like this: 

“MODBUS:ADD=1:REG=0:TYPE=INPUT:FORMAT=INT16”.  

field description options  
ADD Modbus device 

address 
value between 1-247  

REG Register number 
(starting from 0) 

value between 0-65535  

TYPE Modbus device 
type 

INPUT 
HOLDING 
SINGLEREG 
DISCRETE 
COIL 

read-only register 
read-write register 
write single register 
read-only Boolean 
read-write Boolean 

FORMAT Register format 
defines how the 
value is 
presented in 
registers 

INT16 
UINT16 
INT32 
UINT32 
REV_INT32 
REV_UINT32 
FLOAT 
REV_FLOAT 
 
BITMASK;xxxx 

signed single register 
unsigned single register 
signed dual register 
unsigned dual register 
signed dual register with reversed register order 
unsigned dual register with reversed register order 
IEEE 754 dual register single precision floating point 
IEEE 754 dual register single precision floating point with 
reversed register order 
bitmask operation for register, bitmask is presented in 
hex format and it can contain one or more bits set 
Example: BITMASK;0020 means the 6th bit 

The ModbusMasterSettings.txt file 
In addition to these settings some serial settings and other communication related settings are needed. Those 
are defined in a text file named “ModbusMasterSettings.txt” which must reide in your project folder. That is the 
same folder as where the htm pages are located. If the file is not found or the definitions file is invalid, default 
settings are used (57600, 8N1, 50ms send delay, 100ms timeout, AUTO generated combined modbusdevices). 
There are example projects with the correct syntax used for the Modbus master feature available in the Demo 
projects folder. The settings in the file are explained in the following table. The term “modbusdevice” is used as 
the name for a zone of registers towards which a communication socket is opened by the Modbus master display. 

The minimum required lines to define the communication sockets are: 
field Options (or example) description 
BAUD 9600 

19200 
38400 
57600 
115200 

communication baud rate 

BITS 8n1 
8e1 
8o1 
8n2 
8e2 
8o2 

data bits, parity and stop bits 



Fidelix FX-RP multiDISPLAY  Programming manual  page 29 of 41  

field Options (or example) description 
SENDDELAY numeric value Send delay before new request in milliseconds. The timer 

is started when a reply has been received or when the 
timeout timer has ran out. 

MODBUSDEVICES AUTO 
MANUAL 

Defines if modbusdevices are generated automatically or 
manually. If AUTO is selected, defined modbusdevices are 
generated by the information given in point names. 
Also modbusdevices needed to write registers defined by 
SENDREGISTERS will be created. However, if the read 
registers from a slave are not available on the UI of the 
master display, make sure you still manually add the 
corresponding modbusdevice for those registers. 

COMBINE FALSE  
or numeric value 

Affects only if AUTO mode defined. Defines if Modbus 
registers should be combined as a one larger 
modbusdevices containing multiple registers.  
This can speed up the communication by reducing the 
number of different Modbus messages.  
Maximum number of registers to combine can be defined 
here (< 100), or if FALSE then registers are not combined. 

TIMEOUT numeric value Affects only if AUTO mode defined. Defines timeout for 
auto generated modbusdevices. Same timeout is used for 
every device. Makes sure not to select a value that is too 
small, especially during development! 

 

Furthermore, per communication socket, the “Modbusdevice” definition is needed. This to tell the multiDISPLAY 
what communication socket to open to the connected slave(s). 

In addition to that, a “SendRegister” definition can tell the multiDISPLAY where to read and send a value. This 
can be an internal display register value, or a register of a connected slave. Make sure to define the 
communication socket for reading, using the “ModbusDevice” definition; only the registers defined using the 
“WRITEREG” parameter are defined automatically. 

 
field Options (or example) description 
MODBUSDEVICE ADDRESS:1, 

STARTREG:0,  
COUNT:1,   
TYPE:COIL, 
TIMEOUT:180 

Affects only if MANUAL mode defined.  
Modbusdevices are defined by using the same format as 
for point names. Multiple modbusdevices can be defined. 
 

Also needed for reading values from one slave and 
writing them to a second, while the read values are not 
shown on the multiDISPLAY. In this case, it can be used 
in combination with MODBUSDEVICES=AUTO. 

MODBUSDEVICE ADDRESS:10, 
READREG:33, 
WRITEREG:4, 
COUNT:1,  
TYPE:HOLDING, 
TIMEOUT:250 

Affects only if MANUAL mode defined. Use this to make 
a field that shows the value of register 33, but that writes 
to register 4. The slave will most likely handle the writing 
of the value you write into register 4 into register 33. 
Don’t forget to manually create the modbusdevice for 
register 4, as this will only generate the device for 
register 33. 

SENDREGISTERS ADDRESS:1, 
WRITEREG:9057, 
FIXEDVALUE:1, 
COUNT:1, 
TIMEOUT:500 

Send a fixed value to a certain register on a slave device 
(for instance for a “communication is active” bit detection 
that will be set to 0 again by the slave). 
COUNT as a number uses Modbus code 16, 
COUNT:SINGLE uses Modbus code 06. 

SENDREGISTERS ADDRESS:10, 
WRITEREG:11, 
COUNT:1, 
FIXEDVALUE:45, 
TIMEOUT:220, 
SENDIF:TIMESCH1=12 

Send a fixed value to a certain register on a slave 
device, based on the value of an internal time schedule 
on the display. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 30 of 41  

field Options (or example) description 
SENDREGISTERS ADDRESS:8, 

WRITEREG:125, 
SOURCEREG:3007, 
COUNT:5, 
TIMEOUT:300 

Send the display’s internal registers to a slave. 
 

The example here will send the status of the five internal  
time schedules to registers 125-129 of slave at address 
8 

SENDREGISTERS ADDRESS:4, 
WRITEREG:6, 
SOURCEREG: 
12.2458.HOLDING, 
COUNT:1, 
TIMEOUT:300 

Send the register value from one slave to another 
register on another slave. Don’t forget to define the slave 
address that is being read as MODBUSDEVICE, if it is 
not visible on the display’s interface, even when 
MODBUSDEVICES = AUTO is selected! 
Target registers are always Holding registers. 

SENDREGISTERS ADDRESS:0, 
WRITEREG:3019, 
SOURCEREG:15.28,  
COUNT:1, 
TIMEOUT:85 

When the address to send to is zero, the slave register is 
copied into the display’s own registers. 
This can be used for instance for triggering a sound 
alarm based on a slave register’s value. 

 
 

Available memory for communication socket definitions 
The number of Modbusdevices is not a fixed limit as such, but there is limited amount of memory reserved for 
the definition of Modbus communication sockets. The available memory for defining communication sockets 
(Modbusdevices) is 10240 bytes (4644 for V1 displays). Each Modbusdevice can have 99 registers maximum. 
Each separate Modbusdevice takes up 40 bytes of memory + 2 bytes per register in its definition.  

So; a Modbusdevice that consists of 15 registers will use 70 bytes. Similarly, when defining Modbusdevices per 
1 register, they will each use 42 bytes, making the maximum number of Modbusdevices you can define 243 (or 
110 for V1 displays).  

It thus depends on the setup how many registers or register ranges (Modbusdevices) you can read out on one 
FX-RP multiDISPLAY. If, while using the “MODBUSDEVICES=AUTO” setting, the available memory is 
insufficient, you can try to define the devices manually. 

 

Additional remarks 
The easiest way to make sure you have defined everything correctly, is by opening the internal communication 
report of the multiDISPLAY by placing a “LINK” element, pointing to “MODBUS” (see “links” section earlier in 
this document). 

NOTE: Copying registers from 1 slave to another always requires 2 independent Modbusdevices; 1 register 
section that is being read and 1 register section that is being written. This needs to be considered when 
calculating the available memory for Modbusdevices. 

NOTE: The converter doesn’t do any checking of the number of Modbus communication sockets defined, so 
make sure that, when using a lot of Modbusdevices, you calculate the actual memory used. 

The multiDISPLAY demo projects folder contains an example project folder named “Modbus master example” 
which will help you on your way. Also, the folders “text editing example”, “basic example” and “time editing 
example” contain example files for the master functionality.  

 

ModbusMasterSettings.txt example 
An example of each of the features available in the “ModbusMasterSettings.txt” file and the correct syntax of 
how to use them: 



Fidelix FX-RP multiDISPLAY  Programming manual  page 31 of 41  

:: This is an example file to be used as reference to create your own custom file 
:: Note that comment lines start with "::" 
:: Comments are always a full line; comments behind parameters render this file invalid 
 
 
:: == Set Modbus master baud rate 
:: BAUD=9600 
:: BAUD=19200 
:: BAUD=38400 
BAUD=57600 
:: BAUD=115200 
 
:: == Set bit count, parity and number of stop bits 
BITS=8n1 
:: BITS=8e1 
:: BITS=8o1 
:: BITS=8n2 
:: BITS=8e2 
:: BITS=8o2 
 
 
:: == Set Modbus send delay in milliseconds (a delay before next Modbus message is sent) 
:: == The delay timer starts running after a reply has been received  
:: == or the timeout timer has ran out 
SENDDELAY=500 
 
 
:: == Select if modbusdevices (communication sockets) should be made automatically or manually 
MODBUSDEVICES=AUTO 
:: MODBUSDEVICES=MANUAL 
 
 
:: == If MODBUSDEVICES=MANUAL is selected, these settings do not have any effect  
:: == If MODBUSDEVICES=AUTO is selected, then you can select if Modbusdevices should be  
:: == combined making one larger Modbusdevice with multiple registers 
:: == set to FALSE if combining is not allowed, or enter the maximum number of registers that should 
:: == be combined per query 
:: COMBINE=FALSE 
COMBINE=10 
 
:: == Set Modbus timeout in milliseconds (only for autogenerated Modbusdevices) 
TIMEOUT=250 
 
 
:: == If MODBUSDEVICES=MANUAL selected Modbusdevices have to be defined manually 
:: MODBUSDEVICE=ADDRESS:5,  STARTREG:0,    COUNT:1,  TYPE:HOLDING,  TIMEOUT:100 
:: MODBUSDEVICE=ADDRESS:9,  STARTREG:2,    COUNT:10, TYPE:HOLDING,  TIMEOUT:120 
:: MODBUSDEVICE=ADDRESS:33, STARTREG:0,    COUNT:1,  TYPE:INPUT,    TIMEOUT:100 
:: MODBUSDEVICE=ADDRESS:12, STARTREG:0,    COUNT:1,  TYPE:DISCRETE, TIMEOUT:100 
:: MODBUSDEVICE=ADDRESS:1,  STARTREG:2,    COUNT:1,  TYPE:COIL,     TIMEOUT:100 
 
 
:: == Use this to make an element that shows the value of register 33, but writes into register 4  
:: == this will generate a Modbusdevice for register 33,  
:: == so don't forget to make sure you then have the "write" register also defined as Modbusdevice 
:: MODBUSDEVICE=ADDRESS:10, READREG:33, WRITEREG:4, COUNT:1,  TYPE:HOLDING, TIMEOUT:100 
:: MODBUSDEVICE=ADDRESS:10, STARTREG:4, COUNT:1, TYPE:HOLDING, TIMEOUT:120 
 
 
:: == Send a fixed value to a slave register  
:: SENDREGISTERS=ADDRESS:10, WRITEREG:29, COUNT:1,      FIXEDVALUE:1,    TIMEOUT:100,  
:: SENDREGISTERS=ADDRESS:1,  WRITEREG:6,  COUNT:SINGLE, FIXEDVALUE:2048, TIMEOUT:200 
 
 
:: == Send a fixed value to a slave register,  
:: == based on the value of an internal time schedule of the master display 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:3,  TIMEOUT:100, SENDIF:TIMESCH1=0 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:6,  TIMEOUT:100, SENDIF:TIMESCH1=1 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:9,  TIMEOUT:100, SENDIF:TIMESCH1=2 
:: ... 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:45, TIMEOUT:100, SENDIF:TIMESCH1=14 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:11, COUNT:1, FIXEDVALUE:48, TIMEOUT:100, SENDIF:TIMESCH1=15 
 
 
 
 



Fidelix FX-RP multiDISPLAY  Programming manual  page 32 of 41  

:: == Send internal registers (such as time schedules, temperature, …) to slave(s) 
:: == local TE 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:1002, COUNT:1,      SOURCEREG:3000, TIMEOUT:150  
:: SENDREGISTERS=ADDRESS:10, WRITEREG:2,    COUNT:1,      SOURCEREG:3001, TIMEOUT:300 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:5,    COUNT:1,      SOURCEREG:3002, TIMEOUT:300 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:8,    COUNT:1,      SOURCEREG:3003, TIMEOUT:300 
:: SENDREGISTERS=ADDRESS:11, WRITEREG:2000, COUNT:1,      SOURCEREG:3004, TIMEOUT:300 
:: SENDREGISTERS=ADDRESS:29, WRITEREG:456,  COUNT:5,      SOURCEREG:3007, TIMEOUT:300 
:: == local minute (0-59) 
:: SENDREGISTERS=ADDRESS:12, WRITEREG:1044, COUNT:1,      SOURCEREG:3005, TIMEOUT:300 
:: == local Time Schedule 1 value 
:: SENDREGISTERS=ADDRESS:13, WRITEREG:1044, COUNT:1,      SOURCEREG:3007, TIMEOUT:300 
:: == local Time Schedule 2 value 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:1008, COUNT:1,      SOURCEREG:3008, TIMEOUT:150  
:: using “COUNT:SINGLE” will use Modbus function code 06 instead of 16 for writing to the slave 
:: SENDREGISTERS=ADDRESS:2,  WRITEREG:12,   COUNT:SINGLE, SOURCEREG:3000, TIMEOUT:200 
 
 
:: == Send the value of a register from one slave to another.  
:: == Remember to add the read-registers to the Modbusdevice list 
:: == (even when you are using the MODBUSDEVICES=AUTO setting) 
:: == if you don't have those registers visible on the display.  
:: == Only the write-registers are automatically created as Modbusdevice. 
:: == When using the MODBUSDEVICES=MANUAL parameter,  
:: == remember to create both the read and write registers as Modbusdevices.  
:: == writing can only be done into Holding registers. 
:: == If no type is specified, Holding register is assumed. 
:: SENDREGISTERS=ADDRESS:20, WRITEREG:17,   COUNT:1,      SOURCEREG:1.2.COIL,         TIMEOUT:250 
:: SENDREGISTERS=ADDRESS:20, WRITEREG:480,  COUNT:7,      SOURCEREG:3.20480.HOLDING,  TIMEOUT:250 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:1017, COUNT:1,      SOURCEREG:11.1017,          TIMEOUT:150 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:1020, COUNT:1,      SOURCEREG:11.1020.DISCRETE, TIMEOUT:150 
:: SENDREGISTERS=ADDRESS:10, WRITEREG:1023, COUNT:1,      SOURCEREG:11.1023.INPUT,    TIMEOUT:150 
:: SENDREGISTERS=ADDRESS:11, WRITEREG:2,    COUNT:SINGLE, SOURCEREG:2.0,              TIMEOUT:200 
 
 
:: == Set the value of a slave register to a local multiDISPLAY register.  
:: == This can be used to trigger an alarm sound based on a slave register’s value, 
:: SENDREGISTERS=ADDRESS:0, WRITEREG:3060, COUNT:2,      SOURCEREG:1.2.COIL, TIMEOUT:125 
:: SENDREGISTERS=ADDRESS:0, WRITEREG:3029, COUNT:SINGLE, SOURCEREG:3.9547,   TIMEOUT:130 
 

Note that the FX-RP multiDISPLAY -obviously- cannot operate as a Modbus master and slave at the same time. 
However, a display acting as a Modbus master can be changed to be a Modbus slave by inserting a μSD-Card 
containing a slave project and rebooting the display (= taking power off).  

Alarm sounds based on slave register values 
When operating as a Modbus master, the FX-RP multiDISPLAY can be used to play alarm sounds based on the 
value of a register of one of the connected slaves. This can be any type of register. A “SENDREGISTERS” 
declaration needs to be made in the ModbusMasterSettings file using “ADDRESS:0”.  

Selecting and triggering the sound directly from the slave’s register value 
Copy the value from a holding or input register to local register 3060 (soft sound) or 3061 (loud sound) (for 
details about the available sounds, see the “Display Parameters” section later in this document) by using the 
SENDREGISTERS=ADDRESS:0, WRITEREG:3061, COUNT:1, SOURCEREG:1.2, TIMEOUT:125 declaration 
in the ModbusMasterSettings file. 

Selecting the sound from the multiDISPLAY’s local registers 
As described in the “Display Parameters” section later in this document, local registers 3029+3030+3031 can 
be used to set up an (alarm) sound triggering:  

- Set local register 3031 to a value from 1..12 to determine the tune.  

- Set local register 3030 to the value the Modbus slave will have when in alarm mode. 

- Copy the Modbus slave register to local register 3029 by using a declaration like 
SENDREGISTERS=ADDRESS:0, WRITEREG:3029, COUNT:SINGLE, SOURCEREG:15.3, TIMEOUT:150 
in the ModbusMasterSettings file. 



Fidelix FX-RP multiDISPLAY  Programming manual  page 33 of 41  

The sounds triggered from these registers take preference over the sounds triggered by registers 3060/3061. 
Even the muting with register 3028 (described below) will mute any sound triggered from registers 3060/3061. 

Mute the display sound triggered by local registers 3029+3030+3031 
When the sound is triggered by local register 3029+3030+3031 (described just above), setting register 3028 to 
“1” will mute that sound specified in register 3031. 

Use for instance “REG3028#MOMENTARY:600” in the PointID field with fixed value “0 1” on a button to mute 
the triggered alarm sound for 10 minutes. 

This mute takes preference over any sound triggered via registers 3060/3061. 

Complete Display register structure overview 
All internal registers used by the FX-RP multiDISPLAY are Holding registers.  

Register sections 
start end function 
0 749 Input data 
1000 1749 Output data 
2000 2309 Trend 
2310 2373 Graphical look-up table editor 
2400 2911 String data 
3000 3063 Special functions 
65278 65343 Data download 

 

Input data (input from an external Modbus master) 
The external Modbus Master writes to these slave display registers: 

POINT1 Reg00 Parameters, Divider, Unit 
 Reg01 Value (16 highest bits) 
 Reg02 Value (16 lowest bits) 
POINT2 Reg03  
 Reg04  
 Reg05  
POINT3 Reg06  
 Reg07  
 Reg08  
…   
POINT250 Reg747 Parameters, Divider, Unit 
 Reg748 Value (16 highest bits) 
 Reg749 Value (16 lowest bits) 

The “Parameters, Divider, Unit” register is divided into two: 

Parameters & Divider (most significant byte of the “Parameters, Divider, Unit” register), and Unit (least significant 
byte of the “Parameters, Divider, Unit” register).  

For the Parameters & Divider part, these are the meaning of bits from most significant to least significant: 

8: reset manual override 
7: do not show value set from display 
6: reserved  
5: reserved  
4-1: divider for the value (# of decimals) 
 0000 1 (0) 
 0001 10 (1) 
 0010 100 (2) 
 0011 1000 (3) 



Fidelix FX-RP multiDISPLAY  Programming manual  page 34 of 41  

 
The unit part contains the chosen value as follows: 
0 no unit 15 K 30 ohm 45 g/kg 
1 °C 16 s 31 N 46 °F 
2 Pa 17 min 32 kg 47 CFM 
3 bar 18 h 33 ms 48 GPM 
4 V 19 Hz 34 hPa 49 %LIE 
5 l/s 20 W 35 W/m2 50 %LEL 
6 m3/h 21 kW 36 mm 51 %vol 
7 % 22 MW 37 cm 52 m3/s 
8 m3 23 Lx 38 km 53 rpm 
9 l 24 km/h 39 m 54 m/s 
10 mA 25 ° 40 €   
11 Wh 26 °/s 41 €/kWh    
12 kWh 27 l/h 42 CFM   
13 MWh 28 l/100km 43 GPM   
14 ppm 29 %Rh 44 g/m3   

The “Parameters, Divider, Unit” register contains 0x0F99 (3993) if the register is not set by the Modbus master. 

 

Output data (output read by an external Modbus master) 
The external Modbus master reads from these slave display registers: 

POINT1 Reg1000 Info 
 Reg1001 Value (16 highest bits) 
 Reg1002 Value (16 lowest bits) 
POINT2 Reg1003  
 Reg1004  
 Reg1005  
POINT3 Reg1006  
 Reg1007  
 Reg1008  
…   
POINT250 Reg1747 Info 
 Reg1748 Value (16 highest bits) 
 Reg1749 Value (16 lowest bits) 

 
The “Info” register contains 0 if the value is not set from the display and 1 if the value set from the display.         
The FX-RP multiDISPLAY resets this back to 0 if the value is equal in both input and output register sections. 
This register also works as a “lock” to the point value registers, meaning that as long as the info register contains 
“1”, the local value will be shown, and the value the Modbus master may be writing into registers 1+2, 4+5, …  
is ignored, unless of course you are setting the seventh bit of the “Parameters, Divider, Unit” register. 

How to work with input/output registers 
Each display point (POINT1, POINT2, ..., POINT250) has 6 registers attributed to it (3 input and 3 output).  

When making graphics, you can assign a unit and a divider (the number of decimals) to each point. You can 
also set these attributes from your master, if that is desirable, into register 0, 3, ..., 747. This feature is currently 
no longer frequently used. Its original purpose (during development there were only 50 display points) was to 
set the point type dynamically; having only 1 page, "looping through" different values. Currently that register is 
set at 0F99x16 (3993) if it has not been written over by the Modbus master. 

Each point has an "info" register (1000, 1003, ..., 1747) which indicates if the point’s value has been set from 
the display (=1). This is useful when you allow a user to enter a value (you ticked the “controller set value” box 
in the EditPoint dialog box in the graphics editor) and you have not defined #MIN and/or #MAX on the graphics, 
but want to validate the input, or simply monitor this register to detect changes in setpoints. In this case you can 



Fidelix FX-RP multiDISPLAY  Programming manual  page 35 of 41  

use the "Parameters, Divider, Unit" registers (0, 3, ..., 747) to initially hide the user input value, validate it in your 
master and only then write it to the display (bits 7 and 8 of the most significant byte, see Input Data). 

A value set from the display will be saved into registers 1001+1002, 1004+1005, ..., 1748+1749. At the same 
time, it will set register 1000, 1003, ..., 1747 to "1", indicating a point's value has been changed locally. If the 
master reads these values, it can “confirm” them by writing the same value into registers 1+2, 4+5, ..., 748+749. 
Once that has been done, the display will set the info register (1000, 1003, ..., 1747) back to 0, again notifying 
the Modbus master that all points and values have been properly synchronized. 

A 4-and-a-half-minute video is available on Youtube to clarify this process: https://youtu.be/tEushV8ugsA 

This rather complex process is however not always necessary. Actually, in most cases, we don't use it when not 
working with the Fidelix multi24 controller (where all of these functionalities are embedded into two functions 
GetDisplayPointF and SetDisplayPointF). Using a third party controller, the easiest way is to just write directly 
into registers 1001+1002, 1004+1005, ..., 1748+1749, overwriting any value from the display when the point 
value is editable from both the multiDISPLAY and the Modbus master.  

IN SHORT: In most cases, you will have a very distinct separation between the points you want to read and the 
ones you want to write and only select “controller set value” for those points you will set from the multiDISPLAY. 
Read those from registers 1001+1002, 1004+1005 etc and write “read only” values on the multiDISPLAY that 
are being written by the Modbus master into registers 1+2, 4+5 etc. 

 

Trends (history) 
The FX-RP multiDISPLAY can show trends with up to 300 points. The data is requested by the FX-RP 
multiDISPLAY from the Modbus master. The data is presented as 16bit signed integers, the divider is taken from 
the point definition. Instead of polling registers 2000 and 2001, the Modbus master may poll register 3012 which 
also contains information about requested trend.  

Reg2000 0=Trend ready (cleared by Modbus master), 1=Trend request (set by display) 
Reg2001 Point number of requested point 
Reg2002 Minimum value (used for y-axis scaling) 
Reg2003 Maximum value (used for y-axis scaling) 
Reg2004 Sample interval (seconds, used for x-axis scaling) 
Reg2005 Number of points (max 300) 
Reg2006 Last unsaved measurement 
Reg2007 seconds from last unsaved measurement (0=not used) 
Reg2008 Update interval (seconds, 0=not in use) 
Reg2009 reserved 
Reg2010 Trend data start (300 registers) 
Reg2011 

 

… 
 

Reg2309 Trend data end 

 

Graphical look-up table editor 
The FX-RP multiDISPLAY can handle graphical look-up table editing with up to 10 points. The actual look-up 
table must be implemented inside the Modbus master. Use the #LUT definition as a part of point name in the 
graphics editor to use the look-up table function. The LUT operation is started by the FX-RP multiDISPLAY if a 
point with #LUT definition is clicked. The FX-RP multiDISPLAY writes the point number of the requested LUT to 
register 2310. The Modbus master needs to poll register 2310 to notice the LUT request. After the request, the 
Modbus master should write the correct data to registers 2311-2339 and set register 2310 to “0xAAAA” indicating 
that the data is uploaded to the FX-RP multiDISPLAY. After the user has finished the modification of the LUT 
points, the FX-RP multiDISPLAY saves the (new) values to registers 2320-2339 and register 2310 is set to value 
“0xBB00 + point number” indicating to the Modbus master that the process has finished. The Modbus master 
can then read out the registers again to update the actual lookup table which resides inside the Modbus master 

https://youtu.be/tEushV8ugsA


Fidelix FX-RP multiDISPLAY  Programming manual  page 36 of 41  

Reg2310 Status register 
Reg2311 Minimum value of X-axis 
Reg2312 Maximum value of X-axis 
Reg2313 Minimum value of Y-axis 
Reg2314 Maximum value of Y-axis 
Reg2315 Divider. The most significant byte contains the divider to be used for the Y-axis. 

The least significant byte contains the divider to be used for the X-axis. If zero is used in 
the most significant byte (or firmware < 3.01), the divider in the least significant byte is 
used for both axes. 

Reg2316 Point count (1..10) 
Reg2317 Hairline (0=do not draw, 1=draw) 
Reg2318 Adjust buttons (0=no buttons, 1=upper left corner, 2=upper right corner, 3=lower left 

corner, 4=lower right corner) 
Reg2319 reserved 
Reg2320 X value of point 1 
… … 
Reg2329 X value of point 10 
Reg2330 Y value of point 1 
… … 
Reg2339 Y value of Point 10 
Reg2340 X-axis label text (Ascii) first register 
… … 
Reg2349 X-axis label text (Ascii) last register 
Reg2350 Y-axis label text (Ascii) first register 
… … 
Reg2359 Y-axis label text (Ascii) last register 
Reg2360 Title text (Ascii) first register 
… … 
Reg2369 Title text (Ascii) last register 

 

String Variables 
The string section (registers 2400-2911) is divided into 8 blocks with 64 registers in each block (blocks 0 to 7; 
block 0: registers 2400-2463, block 1: registers 2464-2527, block 2: registers 2528-2591, block 3: registers 2592-
2655, block 4: registers 2556-2719, block 5: registers 2720-2783, block 6: registers 2784-2847, block 7: registers 
2848-2911). Each block may contain one or more strings. The first register of each block contains the count of 
strings in that block. The following X registers contain the start register and length of the corresponding string 
where X = the number of strings in that block. As an example the register section containing strings "Hello,", 
"Fidelix" and "rules!" should be configured as follows: 

Register HEX value Decimal value  
2400 0x0003 3 number of strings = 3 
2401 0x0406 1030 Start register of first string       = 4,   length = 6 bytes 
2402 0x0707 1799 Start register of second string = 7,   length = 7 bytes 
2403 0x0B06 2822 Start register of third string     = 11, length = 6 bytes 
2404 0x4865 18533 ‘H’            ‘e’ 
2405 0x6C6C 27756 ‘l’ ‘l’ 
2406 0x6F2C 28460 ‘o’ ‘,’ 
2407 0x4669 18025 ‘F’ ‘i’ 
2408 0x6465 25701 ‘d’ ‘e’ 
2409 0x6C69 27753 ‘l’ ‘i’ 
2410 0x7800 30720 ‘x’  
2411 0x7275 29301 ‘r’ ‘u’ 
2412 0x6C65 27749 ‘l’ ‘e’ 
2413 0x7321 29473 ‘s’ ‘!’ 



Fidelix FX-RP multiDISPLAY  Programming manual  page 37 of 41  

If you choose to have strings of 20 characters, this means you need 10 registers per string + 1 register per string 
for the string description (=11 registers per string). This means you can have 5 strings per text block (=55 
registers), or 40 strings of each 20 characters in total on the display. Of course each string can have its own 
length and you can choose to have as many and as long (or short) strings as is needed. 

Addressing strings on the slave display is done by using pointID: STRING and writing in the “Text” attribute: 
STRING_XXYY (four decimal characters), in which XX is the block number from 00 to 07, and YY is the number 
of the string inside that block. "Show point Value" should be selected. In the example above, the string “rules!” 
is referenced like this: “STRING_0003”. It is also possible to reference strings by point value. The point name 
should be as normal (POINTxx) and you should write "STRING" in the text field. "Show point Value" must be 
selected. By then setting the point’s value to 103, you reference block 1 string 3. 

The excel tool “multiDISPLAY register value and character cheat sheet.xlsx” which you can find on our partner 
download page, can be used to easily find the right values for the characters you need. 

 

Display parameters 
The sample IEC-code for use with Info Team’s program “OpenPCS” generated by the converter will handle 
some of these special purpose registers in the end of the file “DisplayInterface.st”.  Modify that file if you need 
more functions to be used in the program you run on your multi-24 module. If the FX-RP multiDISPLAY is 
connected directly to an FX controller, these registers should be handled by using Modbus devices. 

 

Reg# Function R/W Notes 
3000 Internal Temperature Measurement in °C R Multiplied by 10, for example 255 = 25.5°C 
3001 Current Day R Current Day (1-31) 
3002 Current Month R Current Month (1-12) 
3003 Current Year R Current Year (e.g. 2018) 
3004 Current Hour R Current Hour (0-23) 
3005 Current Minute R Current Minute (0-59) 
3006 Tamper Status R 0=OK, 1023=Tamper detected (read-only copy of 

register 3062) 
3007 Time Schedule 1 Status R Possible values from 0..15 
3008 Time Schedule 2 Status R Possible values from 0..15 
3009 Time Schedule 3 Status R Possible values from 0..15 
3010 Time Schedule 4 Status R Possible values from 0..15 
3011 Time Schedule 5 Status R Possible values from 0..15 
3012 History request R 0=No request, 1-250=point number for which 

history is requested 
3013  Project folder  R  Last character of the currently active project 

folder name. Used to detect which project is 
loaded 

3014 Internal Temperature Measurement °F R Multiplied by 100, so 6883->68.83°F 
3015 Internal Temperature Measurement °C R Multiplied by 100, so 2555->25.55°C 
3016 Proof of “user action” R/W Master can write 0 to this register once all 

registers have been read. Contains the first 
changed point number after “0” reset. Used for 
monitoring only one register to see when and if 
user has changed anything on the display. 

3017 Current day of the week R 0=Sat, 1=Sun, 2=Mon, …, 6=Fri 
3018 Firmware version R Multiplied by 100, for example 304 = version 3.04 
3019 Not in use R n/a 
 … R n/a 



Fidelix FX-RP multiDISPLAY  Programming manual  page 38 of 41  

Reg# Function R/W Notes 
 … R n/a 
3027 Not in use R n/a 
3028 Mute Alarm Sound R/W Mute alarm sound triggered by registers 

3029+3030+3031. 1=Muted.  
E.g.: Use REG3028#MOMENTARY:600 with 
fixed value “0 1” on a button to mute the triggered 
alarm sound for 10 minutes. 

3029 Trigger Sound Variable R/W When this register contains the same value as 
register 3030, the sound in register 3031 is 
triggered. (More: see earlier in this document).  

3030 Trigger Sound Value-To-Match R/W The value that will trigger the sound specified in 
register 3031 when register 3029 contains that 
same value.  
NOTE: This register is saved to the local 
memory, and read from there at power-up.  
Can be written to up to 100 000 times. 

3031 Trigger Sound Sound-To-Play R/W Value from 1..12 determining what sound is 
played (loudly) when registers 3029 and 3030 
contain the same value.  
See register 3061 for the list of available tunes. 
NOTE: This register is saved to the local 
memory, and read from there at power-up.  
Can be written to up to 100 000 times. 

3032 Operating Mode Display Brightness  R/W 10%-100%, multiplied by 10 
3033 Standby Mode Display Brightness R/W 0%-100%, multiplied by 10 
3034 Apply Brightness Settings R/W If 1, apply values from registers 3032 and 3033 
3035 Set VCOML R/W 0-21, 0=VLCD63x0.60, 1=VLCD63x0.63, etc. 
3036 Set VCOMH R/W 0-63, 0=VLCD63x0.36, 1=VLCD63x0.37, etc. 
3037 Set VLCD63 R/W 0-15, 0=VREFx1.780, 1=VREFx1.850, etc. 
3038 Set Frequency R/W 0-6, 0=50Hz, 1=55Hz, etc... 
3039 Apply Display Settings R/W If 1, apply values from registers 3035 – 3038. 

These registers contain values to change internal 
voltage levels, affecting the viewing angle and 
other viewing related settings.  
Typically, the standard settings are tested and 
optimal. Change them on your own responsibility. 

3040 Enable Click Sound R/W 0=disabled, 1=enabled, 2=user selectable 
3041 Enable Finger Mode R/W 0=disabled, 1=enabled, 2=user selectable 
3042 Enable Upside Down Mode R/W 0=disabled, 1=enabled, 2=user selectable 
3043 Settings Page Access through long press R/W 0=enabled, 1=disabled, 2=partially enabled 

(Modbus address disabled) 
3044 Open Page R/W Open corresponding page if value found from link 

list (cleared automatically). See “Links” section. 
3045 Language R/W Set language of time schedule page  

0=English, 1=Finnish 
3046 Open Page 2 R/W Open corresponding page if value found from link 

list (not cleared automatically). See “Links” 
section. 

3047 Calibration Page R/W 0=normal, 1=disabled (also the settings page will 
be disabled), 2=skip calibration and jump directly 
to settings 

3048 Calibration delay R/W 0=normal (7 sec), all other values = seconds 
3049 Startup sound R/W 0=normal (“Positive action” in Quiet mode  

1 or higher=startup sound disabled 
  



Fidelix FX-RP multiDISPLAY  Programming manual  page 39 of 41  

Reg# Function R/W Notes 
3050 En-/Disable Daylight Saving Hour Change R/W 0=enabled (default),  

1=disabled (no automatic change from or to 
daylight saving time.)  
When disabled, visible (though not editable) on 
the settings page. 

3051 Not in use R n/a 
3052 Disable temperature measurement 

compensation 
R/W 0=normal (= use compensation),  

1=disable compensation (only use this when an 
external temperature sensor is used; the 
compensation accounts for the heating of the 
PCB and the heat generated by the display 
depending on its brightness) 

3053 Internal Temperature Measurement 
Adjustment 

R/W This value in °C is added to the internal 
temperature measurement value. (e.g. -23 
means -2.3 °C) 

3054 New Day Value R/W New Day Value (1-31) 
3055 New Month Value R/W New Month Value (1-12) 
3056 New Year Value R/W New Year Value 
3057 New Hour Value R/W New Hour Value (0-23) 
3058 New Minute Value R/W New Minute Value (0-59) 
3059 Apply Values from Registers 3054-3058 R/W Changing from 0 to 1 will apply new date and 

time from registers 3054 – 3058 
3060 Play Quiet Sound R/W Play a quiet sound (1-12=play tune, 13=stop 

playing. Tunes listed at register 3061) 
3061 Play Loud Sound R/W Play a loud sound. Possible sounds / tunes are:  

1: Positive Action  
2: Für Elise 
3: Turkey March 
4: Minuet 
5: Solveig’s song 
6: Siren 1 
7: Siren 2 
8: Whistle 
9: Tone Scale 
10: Positive Beep 
11: Negative Beep 
12: Disaster Beep 
13: Stop Playing 

3062 Tamper State R/W 1023=Tamper detected. Master writes 0 to clear 
3063 Boot Loader Startup Register R/W Used to start bootloader mode, do not change 

this value 
3064 Non-volatile register R/W Registers for values that need to be saved upon 

power supply interruption.  
NOTE: These values are written to the local 
memory, and read from there upon power-up.  
Can be written to up to 100 000 times. 

3065 Non-volatile register R/W 
3066 Non-volatile register R/W 
3067 Non-volatile register R/W 
3068 Non-volatile register R/W 

 

  



Fidelix FX-RP multiDISPLAY  Programming manual  page 40 of 41  

Change log 
This section describes the changes made forward from firmware version 1.47, and converter version 1.16 
released on 10 November 2014. Mentioned numbers are always firmware version number / converter version 
number. 

1.48 / 1.16: Calibration timeout defined in register 3048 changed to multiples of 1 second.  
1.49 / 1.17: Converter now looks in the working folder for the presence of the “ModbusMasterSettings.txt” file. 
When this is found, master communication is generated. Link to calibration page added.  
1.54 / 1.21: Calibration requires two pushes to be far enough from each other, so erroneous clicks are no longer 
validated. #MOMENTARY:x for slave added. “READREG:xx, WRITEREG:yy,” for master added. Added feature 
to send fixed values from the display master depending on the internal time schedule status. 
1.58 / 1.23: Added “SINGLEREG” for reading/writing single holding registers from the multiDISPLAY as Modbus 
master 
1.59 / 1.25: Register 3053 can now be set from the local display itself also. 
1.60 / 1.27: Added dynamic links.  
1.63: Added free graphical interface possibility for internal time schedules. Removed necessity to separate 
Modbus master and slave projects in different folders. Changed order of loading point values and graphics to 
remove delay in graphics update on page load. 
1.66 / 1.32: Ability to read from one Modbus slave and write to another (passing values). 
1.71 / 1.34: Some small bug fixes to previously added functionalities. 
1.73 / 1.36: Register 3017 now contains the day of the week. Added direct link to display settings page. Added 
visualisation of the current Modbus address. Added start-up sound disabling possibility. Added ability to write to 
µSD card when uploading graphics through Modbus. 
1.75 / 1.37: Increased read timeout from µSD card. Added UINT to Modbus master register value formatting. 
1.76 / 1.37: Small bug fix on the #BYTE values 
1.78 / 1.38: Added math operators. Small bug fix on the summer- to wintertime clock change. Time changes at 
04:00 to 03:00 for the change to wintertime, and at 03:00 to 04:00 for the change to summertime. 
1.81 / 1.39: Added possibility to set unused days in time schedules to zero. Signed integers now used for 
displaying internal registers. A few minor bug fixes concerning +/- buttons and constant / momentary values. 
1.82 or 2.85 / 1.40: These two versions are now equivalent for displays from generation 1 and 2. 
 

Following this point, “x.yy” will refer to: x=1 or 2, depending on the hardware version, 
yy=the actual firmware version number. Both versions will continue to be compiled. 
 
x.88 / 1.41: Improved Modbus master communication. Fix in V2 daylight saving time shift. Added new units. 
x.89 / 1.41: Added support for Modbus communication at 4800 bps in slave mode. 
x.90 / 1.43: Added #BITx. Changed visualisation of timeout value on Modbus master communication overview 
page. 
x.90 / 1.44: Length of file names is no longer taking up (valuable) memory space when the “µSD” has not been 
ticked in the converter as the files are all being renamed. A few other converter memory space improvements. 
x.91 / 1.44: Small fix; elements of 1 by 1 pixel no longer cause the display to restart itself  
x.95 / 1.51: Minimum and maximum in the “Fixed value” field of symbols can now be other points (making a 
setpoint value even more dynamic). Added #NOEDIT tag to bar display element. Internal display registers 
(3000+) are now also editable with +/- buttons. Increased available memory for the definition of ModbusDevices 
in Modbus master mode. Increased available memory for projects in V2 displays. File table is now dynamic; 
when more than 2 kB are needed for the internal file allocation table, the converter will dynamically attribute 
more memory to the file table. Added “LOCKPATH” feature to make another project start up by default. Added 
possibility to hide on #BIT or #BYTE value. Added #UNITSPACE PointID suffix. 
x.96 / 1.51: Small fix; links to time schedules on settings page all pointed to time schedule 5 in version x.95.  
x.96 / 1.52: Small fix; Chinese comma character (，) caused the converter to crash. 
x.97 / 1.53: Added #BITGROUP feature to visualisation options (visualise 2..6 bits together as a group) 



Fidelix FX-RP multiDISPLAY  Programming manual  page 41 of 41  

x.98 / 1.54: Added possibility to disable daylight savings time (register 3050). Several small bug fixes. 
x.99 / 1.55: Added FLOAT and REV_FLOAT visualisation to REGxxxx pointID 
 

Following this point, “x.yy” will refer to: x=2 or 3, depending on the hardware version, 
where 2.yy is suitable for hardware version 1, and 3.yy for hardware version 2. 
 
x.00 / 1.56: Added SINGLE as an option to write to Modbus slaves (using function code 06). Several other bug 
fixes, tweaks and improvements, notably on the MATH functionality. READREG / WRITEREG usage in the 
Modbusmastersettings.txt file optimised. 
x.00 / 1.57: 2020-03-18 - Bug fix on including the ampersand in the “CharacterSet.txt” file. 
x.00 / 1.60: 2020-04-22 - Different fonts can now be selected for large and small texts in the converter. 
x.02 / 1.60: 2020-06-25 - Transparency is now differently calculated, allowing for overlaying active elements. 
Earlier versions used background image pixels; now transparent pixels are skipped.  
Modbus master fixes: invalid data from slave could cause Modbus communication to freeze.  
'Register to single register' and 'Fixed value to single register' functionality updated and small bug fix. 
Added separate dividers for graphical lookup table X- and Y-axis values. 
x.03 / 1.60: 2021-02-01 - #MOMENTARY now also works when the display is Modbus master.  
Added the ability to copy slave register values to local register values (Master mode).  
Added registers for conditional sound control, this makes it possible to play sounds depending on Modbus slave 
condition. 
x.04 / 1.60: 2021-06-09 – Register 3018 now contains display firmware version. 
Changes in transparency treatment of non-active elements. Added “x” to TIME4 display parameter to mix leading 
and non-leading zeros in time and dates. Some tweaks on very small graphical elements (1 and 2 pixels wide 
or high). 
x.05 / 1.60: 2021-10-26 – More changes in transparency treatment. Fixed a bug that caused the display to get 
stuck in firmware when uploading pages via Modbus would take too long. Affected chip: SMT32F405. Optimised 
updating process via memory card. 
x.06 / 1.60: 2022-03-30 – Even more changes in transparency treatment; images with transparency that are 
placed on top of elements with no fixed coloured background, will display on top of these elements. Hiding now 
also works on #BIT tags on elements with REGXXXX naming structure and non-volatile registers. Hiding will 
now redraw the whole area of the element.  
x.07 / 1.60: 2022-05-12 – Modbus write message is now resent in Modbus master mode when no reply is 
received from the slave within the defined timeout period. 
x.08 / 1.60: 2023-11-29 – Small change to BITMASK feature in Master mode; previously it only returned “0” or 
“1” as soon as one bit was ‘active’, now it shows the value of the whole bits-group. 
x.09 / 1.60: 2024-03-07 – ModbusMaster functionality fix. Input Registers and Discrete Inputs stopped working 
if an object with the corresponding register was clicked on the graphics. Clicking an object set the “DataChanged” 
flag and any values read from the slave were discarded after that. The “DataChanged” flag was not cleared 
because there was no write operations for read only values. 
 


	FX-RP multiDISPLAY programming manual
	Getting started with the FX-RP multiDISPLAY
	General overview
	Device properties
	Different versions
	Encasings
	Different chip versions

	Using the multiDISPLAY
	Startup
	Recalibrating the touch screen and changing settings

	Updating the firmware of the FX-RP multiDISPLAY
	Using the FX-RP multiDISPLAY with the Fidelix multi24 room controller module
	Demo projects

	Software
	Overview
	Installation
	Fidelix Graphics Editor
	What you should know before you edit pages
	The FXINDEX page
	Editing pages (a few pointers)

	HTML to Multi Display / Room Display Converter
	The program’s UI
	Converting HTML files to the DISPLAY format
	Windows zoom settings and the converter
	Troubleshooting the converter


	Getting projects on the multiDISPLAY
	Loading projects into the FX-RP multiDISPLAY’s internal memory
	With an FX-controller
	With a multi24 module and a PC
	With a µSD memory card

	Using graphics from a μSD-Card
	Minimising binary file size
	Multiple projects on one μSD-Card

	Uploading a project via Modbus

	Detailed programming
	Introduction
	Visualisation customisation
	IEEE-754 Floating Point format

	Increment, Decrease, Minimum & Maximum
	Math operators
	Status texts
	Time and date, temperature, firmware version and Modbus address
	Internal time schedules
	Links
	Strings / texts
	Entrance control user panel
	Customising keypad buttons
	Extended UTF-8-character support

	Modbus master functionality
	PointID’s in the Graphics Editor
	The ModbusMasterSettings.txt file
	Available memory for communication socket definitions
	Additional remarks
	ModbusMasterSettings.txt example
	Alarm sounds based on slave register values
	Selecting and triggering the sound directly from the slave’s register value
	Selecting the sound from the multiDISPLAY’s local registers
	Mute the display sound triggered by local registers 3029+3030+3031


	Complete Display register structure overview
	Register sections
	Input data (input from an external Modbus master)
	Output data (output read by an external Modbus master)
	How to work with input/output registers
	Trends (history)
	Graphical look-up table editor
	String Variables
	Display parameters

	Change log


